Chemistry 12 August 1999 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	В	K	1	A1	25.	С	K	4	L2
2.	В	U	1	A3	26.	D	U	4	L6, 7
3.	С	Н	1	A6	27.	D	Κ	4	L4
4.	А	Н	1	B5	28.	D	Κ	4	L11
5.	D	U	1	C4	29.	А	U	4	M 1
6.	В	Κ	1	B7	30.	А	U	4	L11
7.	А	Н	2	D3	31.	В	Κ	4	O1
8.	А	U	2	E2	32.	А	U	4	P1
9.	С	U	2	E2, F4	33.	В	U	4	P2
10.	А	U	2	E3	34.	В	U	4	P6
11.	А	U	2	F2	35.	В	Κ	4	Q6
12.	В	Κ	2	F4	36.	С	U	4	P3
13.	А	U	2	F5	37.	D	Κ	5	S 1
14.	В	U	3	G1	38.	В	U	5	S 2
15.	С	U	3	G8	39.	С	U	5	S 2
16.	В	U	3	H2	40.	С	U	5	S 6
17.	С	U	3	H5	41.	С	U	5	T1
18.	D	Κ	3	I2	42.	D	Н	5	U3, 4, 5
19.	В	Н	3	H5	43.	В	Κ	5	U6
20.	А	U	3	I5	44.	В	U	5	U9
21.	С	Н	3	I6	45.	В	Κ	5	U11, W7
22.	С	Κ	4	J4	46.	С	U	5	T6
23.	D	U	4	J7	47.	D	U	5	W3
24.	D	U	4	K5	48.	D	U	5	W7

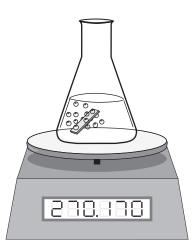
Multiple Choice = 48 marks

Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	3	1	A3
	1	-	_	1	
2.	2	U	2	2	D7
3.	3	U	3	2	F7
4.	4	U	2	3	G7, 8
5.	5	U	5	3	I4
6.	6	Н	2	4	J7, K6
7.	7	U	3	4	N1, 2, M4
8.	8	U	4	4	P5
9.	9	U	3	5	T2
10.	10	U	2	5	V3
11.	11	U	3	5	W7

Written Response = 32 marks

Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions) EXAMINATION TOTAL = 80 marks


LEGEND:K = Keyed ResponseC = Cognitive LevelQ = Question NumberK = Keyed ResponseC = Cognitive Level<math>B = Score Box NumberS = ScoreCO = Curriculum Organizer<math>PLO = Prescribed Learning OutcomeOutcome

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. An experiment is done to determine the rate of the following reaction:

$$2\mathrm{Al}_{(s)} + 6\mathrm{HCl}_{(aq)} \to 3\mathrm{H}_{2(g)} + 2\mathrm{AlCl}_{3(aq)}$$

The following data are collected:

TIME (s)	Mass of Flask Plus Contents (g)
0.0	270.230
30.0	270.200
60.0	270.170

Calculate the rate of consumption of Al in mol/min.

(3 marks)

Solution:

$$\operatorname{rate} = \frac{0.060 \text{ g } \text{ H}_2}{60.0 \text{ s}} = \frac{0.060 \text{ g } \text{ H}_2}{\min} \left\{ \leftarrow 1 \text{ mark} \right\}$$
$$\operatorname{rate} = \frac{0.060 \text{ g } \text{ H}_2}{\min} \times \frac{1 \text{ mol } \text{ H}_2}{2.0 \text{ g}} \left\{ \leftarrow 1 \text{ mark} \right\}$$
$$\operatorname{rate} = \frac{0.030 \text{ mol } \text{ H}_2}{\min} \times \frac{2 \text{ mol } \text{ Al}}{3 \text{ mol } \text{ H}_2} \left\{ \leftarrow 1 \text{ mark} \right\}$$

$$=\frac{0.020 \text{ mol Al}}{\text{min}}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

2. Consider the following equilibrium:

$$4\text{HCl}_{(g)} + \text{O}_{2(g)} \rightleftharpoons 2\text{H}_2\text{O}_{(g)} + 2\text{Cl}_{2(g)} + \text{energy}$$

a) How does the **entropy** change in the forward direction? Explain your reasoning. (**1 mark**) **Solution:**

For Example:

Entropy is decreasing. Five particles of gas (reactants) have more entropy than four particles of gas (products). $\left\{ \leftarrow 1 \text{ mark} \right\}$

b) How does the enthalpy change in the forward direction? Explain your reasoning. (1 mark)

Solution:

For Example:

Enthalpy is decreasing. The reaction is exothermic, so the enthalpy of the products is less than the enthalpy of the reactants. $\left\{ \leftarrow 1 \text{ mark} \right\}$

3. Consider the following equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} \qquad K_{eq} = 1.2 \times 10^{-2}$$

A 2.0 L flask is filled with 0.10 mol HI. Calculate the concentration of H_2 at equilibrium. (3 marks)

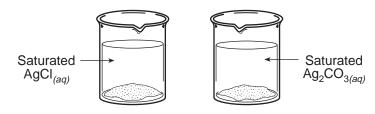
Solution:

$$\begin{bmatrix}
| H_2 + I_2 \rightleftharpoons 2HI \\
0 & 0 & 0.050 \\
\hline
| C + x + x & -2x \\
\hline
| E | x x & 0.050 - 2x
\end{bmatrix} \leftarrow 1\frac{1}{2} \text{ marks}$$

$$K_{eq} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = 1.2 \times 10^{-2} \qquad \left\{ \begin{array}{l} \leftarrow \frac{1}{2} \text{ mark} \\ = \frac{(0.050 - 2x)^{2}}{x^{2}} = 1.2 \times 10^{-2} \\ = \sqrt{\frac{(0.050 - 2x)^{2}}{x^{2}}} = \sqrt{1.2 \times 10^{-2}} \end{array} \right\} \leftarrow \frac{1}{2} \text{ mark}$$

$$x = [H_2] = 0.024 \text{ M} \leftarrow \frac{1}{2} \text{ mark}$$

4. The solubility of $Mn(IO_3)_2$ is 4.8×10^{-3} mol/L.


a) Write the net ionic equation that describes a saturated solution of $Mn(IO_3)_2$. (1 mark) Solution:

$$\operatorname{Mn}(\operatorname{IO}_3)_{2(s)} \rightleftharpoons \operatorname{Mn}_{(aq)}^{2+} + 2\operatorname{IO}_{3(aq)}^{-} \leftarrow 1 \operatorname{mark}$$

b) Calculate the concentrations of the ions in a saturated solution of $Mn(IO_3)_2$. (1 mark) Solution:

$$\begin{bmatrix} Mn^{2+} \end{bmatrix} = 4.8 \times 10^{-3} M$$

$$\begin{bmatrix} IO_3^{-} \end{bmatrix} = 2 \times 4.8 \times 10^{-3} M = 9.6 \times 10^{-3} M$$

5. Consider the following saturated solutions at 25° C:

Using calculations, identify the solution with the greater $[Ag^+]$. (5 marks)

Solution:

$$\begin{array}{cccc} AgCl \rightleftharpoons Ag^{+} + Cl^{-} \\ s & s \\ [Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10} \\ s^{2} = 1.8 \times 10^{-10} \\ s = 1.3 \times 10^{-5} M \\ [Ag^{+}] = 1.3 \times 10^{-5} M \\ Ag_{2}CO_{3} \rightleftharpoons 2Ag^{+} + CO_{3}^{2-} \\ 2s & s \\ [Ag^{+}]^{2}[CO_{3}^{2-}] = 8.5 \times 10^{-12} \\ 4s^{3} = 8.5 \times 10^{-12} \\ s = 1.3 \times 10^{-4} M \\ [Ag^{+}] = 2.6 \times 10^{-4} M \end{array} \right\} \leftarrow 2 \text{ marks}$$

Therefore $\left[Ag^{+}\right]$ in $Ag_{2}CO_{3}$ is higher than $\left[Ag^{+}\right]$ in AgCl. $\leftarrow 1$ mark

- 6. Consider a Brönsted-Lowry acid-base equation, where HNO_2 is a reactant and $H_2PO_4^-$ is a product.
 - a) Complete the following equation. (1 mark)

Solution:

$$HNO_2 + \underline{HPO_4^{2-}} \rightleftharpoons \underline{NO_2^{-}} + H_2PO_4^{-} \leftarrow 1 \text{ mark}$$

b) Identify the weaker base in the equilibrium in part a).

(1 mark)

Solution:

 $NO_2^- \leftarrow 1 \text{ mark}$

- 7. A chemist prepares a solution by dissolving the salt $NaIO_3$ in water.
- a) Write the equation for the dissociation reaction that occurs. (1 mark)
 Solution:

$$\operatorname{NaIO}_{3(s)} \to \operatorname{Na}^{+}_{(aq)} + \operatorname{IO}_{3(aq)}^{-} \longleftrightarrow \mathbf{1} \operatorname{mark}$$

b) Write the equation for the hydrolysis reaction that occurs. (1 mark)

Solution:

$$\mathrm{IO}_{3(aq)}^{-} + \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons \mathrm{HIO}_{3(aq)} + \mathrm{OH}_{(aq)}^{-} \leftarrow 1 \text{ mark}$$

c) Calculate the value of the equilibrium constant for the hydrolysis in part b). (1 mark) Solution:

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$= \frac{1.0 \times 10^{-14}}{1.7 \times 10^{-1}}$$

$$= 5.9 \times 10^{-14}$$

8. Calculate the pH of a solution prepared by adding 15.0 mL of 0.500 M H₂SO₄ to 35.0 mL of 0.750 M NaOH. (4 marks)

Solution:

For Example:

$$\begin{bmatrix} H_{3}O^{+} \end{bmatrix} = 2 \times [H_{2}SO_{4}] = 2 \times 0.500 \text{ M} \times \frac{15.0 \text{ mL}}{50.0 \text{ mL}} \\ = 0.300 \text{ M} \\ \begin{bmatrix} OH^{-} \end{bmatrix} = [NaOH] = 0.750 \text{ M} \times \frac{35.0 \text{ mL}}{50.0 \text{ mL}} \\ = 0.525 \text{ M} \\ \end{bmatrix} \leftarrow 2 \text{ marks} \\ \text{Excess} \begin{bmatrix} OH^{-} \end{bmatrix} = 0.525 \text{ M} - 0.300 \text{ M} \\ = 0.225 \text{ M} \\ \end{bmatrix} \leftarrow 1 \text{ mark} \\ \text{pOH} = -\log(0.225) \\ = 0.648 \\ \text{pH} = 14.00 - 0.648 \\ = 13.352 \\ \end{bmatrix} \leftarrow 1 \text{ mark}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

9. Balance the following redox reaction in basic solution.

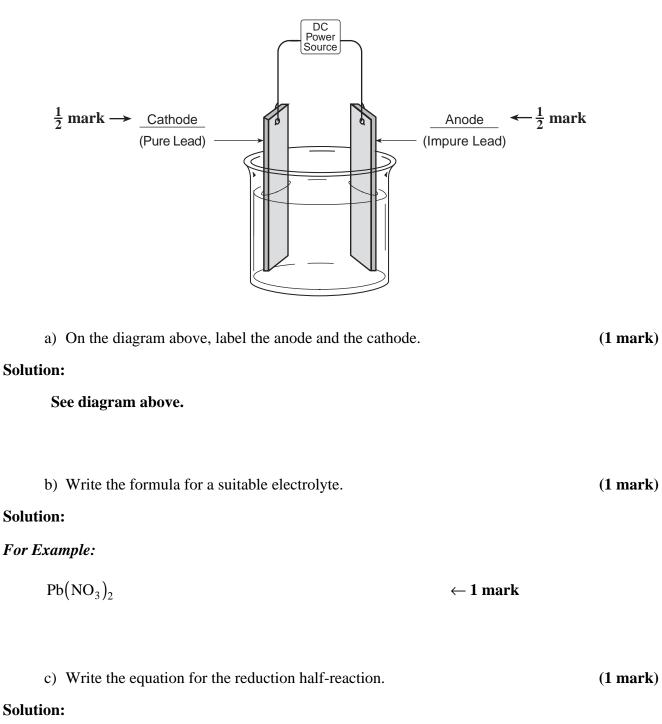
(3 marks)

$$MnO_4^{-} + C_2O_4^{2-} \rightarrow MnO_2 + CO_2$$
 (basic)

Solution:

$$\frac{2 \times (2H_2O + 3e^- + MnO_4^- \to MnO_2 + 4OH^-)}{3 \times (C_2O_4^{2-} \to 2CO_2 + 2e^-)} \begin{cases} 2 \text{ marks} \\ - 4H_2O + 2MnO_4^- + 3C_2O_4^{2-} \to 6CO_2 + 2MnO_2 + 8OH^- \end{cases} \qquad \leftarrow 1 \text{ mark}$$

10. Describe **two** chemically different methods that can be used to prevent corrosion of iron and explain why each method works. (2 marks)


Solution:

For Example:

(Any two of the following for 2 marks. $\frac{1}{2}$ mark for each method, $\frac{1}{2}$ mark for each explanation.)

- paint the iron prevents collision of O_2 and H_2O molecules with iron so that rust cannot form
- attach a material such as magnesium provides cathodic protection (i.e., it is more readily oxidized than the iron)
- provide a small current through the iron object (e.g., boat hull) prevents or reverses the reaction forming rust

11. Consider the following diagram for the electrorefining of lead:

$Pb^{2+} + 2e^- \rightarrow Pb$	← 1 mark
$PD + 2e \rightarrow PD$	← 1 mark

END OF KEY