Chemistry 12 June 1999 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

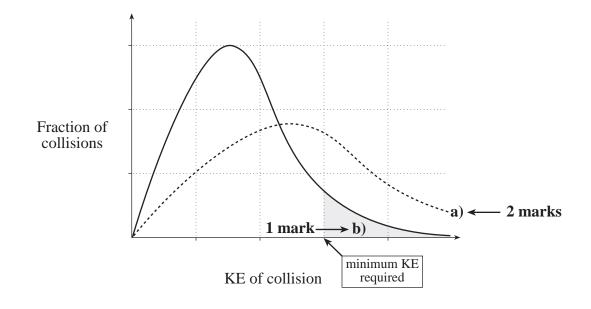
Q	K	С	CO	PLO	Q	K	С	СО	PLO
1.	D	K	1	A2	25.	D	K	4	L1
2.	А	Н	1	A2	26.	С	Κ	4	L3
3.	В	U	1	A6	27.	D	Η	4	L4
4.	С	U	1	B6	28.	С	U	4	K5, J8
5.	А	Н	1	B3, 9	29.	С	U	4	L12
6.	D	Κ	1	C3	30.	А	U	4	M1, N4
7.	С	U	2	D7	31.	С	U	4	N3
8.	С	U	2	E2	32.	В	Κ	4	O5
9.	С	U	2	E2, 5	33.	В	Κ	4	O2
10.	А	U	2	E4	34.	В	U	4	P5
11.	D	U	2	F2	35.	А	Κ	4	Q1
12.	А	Н	2	F4	36.	В	Κ	4	R1
13.	В	U	2	F7	37.	С	U	5	S 1
14.	D	U	3	G8	38.	А	U	5	S2
15.	В	U	3	H1	39.	С	U	5	S2
16.	D	U	3	H7	40.	В	U	5	S 6
17.	В	U	3	I3	41.	С	Κ	5	T1
18.	D	Κ	3	I6	42.	В	U	5	T4
19.	D	Н	4	J1	43.	В	Κ	5	V2
20.	В	U	4	J7	44.	С	U	5	U10
21.	А	U	4	J8	45.	А	U	5	U2
22.	А	U	4	K1	46.	А	Κ	5	U11
23.	В	U	4	K6	47.	С	U	5	W4
24.	А	Κ	4	K11	48.	С	Κ	5	W1

Multiple Choice = 48 marks

Part B: Written Response

Q	В	С	S	СО	PLO
1.	1	U	3	1	B9
2.	2	U	4	2	D3, 4, F5
3.	3	K	2	2	E2
4.	4	U	2	3	H3
5.	5	U	4	3	I4
6.	6	U	2	4	K7
7.	7	U	4	4	M3, 4, 5
8.	8	U	3	4	P3
9.	9	U	4	5	T6
10.	10	U	2	5	U1, 7
11.	11	Н	2	5	W4

Written Response = 32 marks


Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions) EXAMINATION TOTAL = 80 marks

LEGEND:					
$\mathbf{Q} = \mathbf{Q}$ uestion Number	$\mathbf{K} = \mathbf{K}$ eyed Response	$\mathbf{C} = \mathbf{Cognitive Level}$			
$\mathbf{B} = $ Score Box Number	$\mathbf{S} = \mathbf{Score}$	CO = Curriculum Organizer			
PLO = Prescribed Learning Outcome					

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

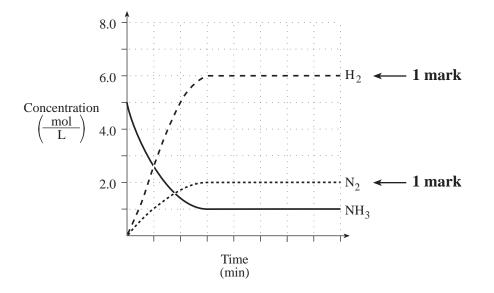
1. Consider the following KE distribution curve for colliding particles:

a) On the diagram above, sketch a line for the distribution of collisions at a higher temperature. (2 marks)

Solution:

See diagram.

b) Shade in the area representing the collisions that could result in forming an activated complex at the lower temperature. (1 mark)


Solution:

See diagram.

2. Consider the following equilibrium system:

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + energy$$

A 1.00 L container is filled with 5.0 mol NH_3 and the system proceeds to equilibrium as indicated by the graph.

a) Draw and label the graph for N_2 and H_2 . (2 marks)

Solution:

See diagram.

b) Calculate the
$$K_{eq}$$
 for $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$. (2 marks)

Solution:

$$K_{eq} = \frac{\left[NH_3\right]^2}{\left[N_2\right]\left[H_2\right]^3}$$
$$= \frac{(1.0)^2}{(2.0)(6.0)^3}$$
$$= 2.3 \times 10^{-3}$$

3. State Le Chatelier's Principle.

Solution:

For Example:

When a system at equilibrium is subjected to a stress, processes occur that tend to counteract the stress and re-establish equilibrium. $\left\{ \leftarrow 2 \text{ marks} \right\}$

4. Write the net ionic equation representing the reaction that occurs when 50.0 mL of 0.20 M ZnSO₄ and 50.0 mL of 0.20 M BaS are combined.

(2 marks)

Solution:

For Example:

$$\operatorname{Zn}_{(aq)}^{2+} + \operatorname{SO}_{4(aq)}^{2-} + \operatorname{Ba}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-} \to \operatorname{ZnS}_{(s)} + \operatorname{BaSO}_{4(s)} \quad \leftarrow 2 \text{ marks}$$

5. When 1.00 g of MgCO₃ is added to 2.0 L of water, some, but not all, will dissolve to form a saturated solution. Calculate the mass of solid that remains undissolved. (4 marks)

Solution:

$$\begin{split} \text{MgCO}_{3} &\rightleftharpoons \text{Mg}^{2+} + \text{CO}_{3}^{2-} \\ & \text{K}_{sp} = \left[\text{Mg}^{2+}\right] \left[\text{CO}_{3}^{2-}\right] \\ & = s^{2} \\ & s^{2} = 6.8 \times 10^{-6} \\ & s = 2.6 \times 10^{-3} \text{ mol/L} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \begin{aligned} \text{Mass dissolved} = \left(2.6 \times 10^{-3} \text{ mol/L}\right) \left(2.0 \text{ L} \times 84.3 \text{ g/mol}\right) \\ & = 0.44 \text{ g} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{split} \end{cases} \\ \end{split} \\ \begin{split} \leftarrow 1 \frac{1}{2} \text{ marks} \\ \leftarrow 1 \frac{1}{2} \text{ marks} \\ & = 0.56 \text{ g} \\ \end{split}$$

6. In aqueous solutions, H_3O^+ is the strongest acid present. This phenomenon is called the levelling effect. Explain why this occurs. (2 marks)

Solution:

For Example:

A strong acid such as HCl donates all of its protons to water forming H_3O^+ . Hence, the strongest acid is the hydronium ion.	$\left. \right\} \leftarrow 2 \text{ marks}$
--	--

7. A 1.00 M OCl^- solution has an $[\text{OH}^-]$ of $5.75 \times 10^{-4} \text{ M}$.

a) Calculate K_b for OCl⁻. (3 marks)

Solution:

$$\begin{bmatrix} I \end{bmatrix} \begin{array}{c} OCI^{-} & + & H_2O \rightleftharpoons HOCI & + & OH^{-} \\ 1.00 & 0 & 0 \\ \hline C \end{bmatrix} \begin{array}{c} -5.75 \times 10^{-4} & +5.75 \times 10^{-4} \\ \hline E \end{bmatrix} \begin{array}{c} 1.00 & 5.75 \times 10^{-4} & 5.75 \times 10^{-4} \\ \hline \end{array} \right\} \leftarrow 1 \frac{1}{2} \text{ marks}$$

$$K_{b} = \frac{[HOC1][OH^{-}]}{[OC1^{-}]}$$

$$= \frac{(5.75 \times 10^{-4})^{2}}{1.00}$$

$$= 3.31 \times 10^{-7}$$

$$\leftarrow 1\frac{1}{2} \text{ marks}$$

b) Calculate
$$K_a$$
 for HOCl.

(1 mark)

Solution:

$$K_{a} = \frac{K_{w}}{K_{b}}$$

$$= \frac{1.0 \times 10^{-14}}{3.31 \times 10^{-7}}$$

$$= 3.0 \times 10^{-8}$$

8. Calculate the mass of NaOH needed to prepare 2.0L of a solution with a pH of 12.00. (3 marks)

Solution:

pH = 12.00. Therefore

$$\begin{bmatrix} OH^{-} \end{bmatrix} = 1.0 \times 10^{-2} \text{ mol/L} \qquad \qquad \leftarrow 1 \text{ mark}$$
moles OH⁻ = $(1.0 \times 10^{-2} \text{ mol/L})(2.0 \text{ L}) = 2.0 \times 10^{-2} \qquad \leftarrow 1 \text{ mark}$
Mass NaOH = $(2.0 \times 10^{-2} \text{ mol})\left(\frac{40.0 \text{ g}}{\text{mol}}\right)$

$$= 8.0 \times 10^{-1} \text{ g}$$

$$\leftarrow 1 \text{ mark}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

9. The data below were obtained in a redox titration of a 25.00 mL sample containing Sn^{2+} ions using 0.125 M KMnO₄ according to the following reaction:

	Volume of KMnO4 used (mL)Trial #1Trial #2Trial #3				
Initial buret reading	2.00	13.80	24.55		
Final buret reading	13.80	24.55	35.32		

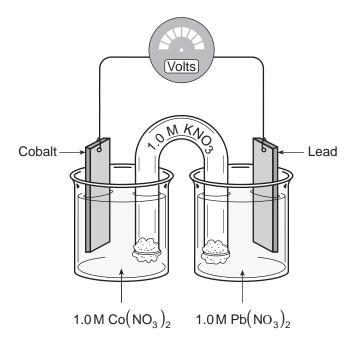
 $2MnO_4^{-} + 16H^+ + 5Sn^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 5Sn^{4+}$

Calculate the $[Sn^{2+}]$ in the original sample.

(4 marks)

Solution:

Average volume of KMnO₄ in Trials 2 and $3 = 0.01076 L \leftarrow 1 \text{ mark}$


Moles of
$$\text{KMnO}_4 = (0.125 \text{ M})(0.01076 \text{ L}) = 1.345 \times 10^{-3} \text{ mol} \quad \leftarrow 1 \text{ mark}$$

Moles of
$$\operatorname{Sn}^{2+} = \frac{5}{2} (1.345 \times 10^{-3} \operatorname{mol}) = 3.363 \times 10^{-3} \operatorname{mol} \quad \leftarrow 1 \operatorname{mark}$$

Molarity of
$$\text{Sn}^{2+} = \frac{(3.363 \times 10^{-3} \text{ mol})}{0.025 \text{ L}} = 0.134 \text{ M} \leftarrow 1 \text{ mark}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

10. Consider the following electrochemical cell:

a) Calculate the initial cell voltage.

Solution:

0.15 Volts

b) What is the purpose of the salt bridge?

Solution:

For Example:

The salt bridge allows ion migration in order to equalize the charge.

(1 mark)

(1 mark)

11. Consider the electrolysis of $1.0 \text{ M} \text{ H}_2 \text{SO}_4$ using inert platinum electrodes.

a) Write the oxidation half-reaction. (1 mark)

Solution:

$$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^- \leftarrow 1 \text{ mark}$$

b) Write the reduction half-reaction. (1 mark)

Solution:

$$2H^+ + 2e^- \rightarrow H_2 \qquad \qquad \leftarrow 1 \text{ mark}$$

END OF KEY