JUNE 1999 #### PROVINCIAL EXAMINATION #### MINISTRY OF EDUCATION # **CHEMISTRY 12** #### **GENERAL INSTRUCTIONS** - 1. Insert the stickers with your Student I.D. Number (PEN) in the allotted spaces above and on the back cover of this booklet. Under no circumstance is your name or identification, other than your Student I.D. Number, to appear on this booklet. - 2. Ensure that in addition to this examination booklet, you have a **Data Booklet** and an **Examination Response Form**. Follow the directions on the front of the Response Form. - 3. **Disqualification** from the examination will result if you bring books, paper, notes or unauthorized electronic devices into the examination room. - 4. All multiple-choice answers must be entered on the Response Form using an **HB pencil**. Multiple-choice answers entered in this examination booklet will **not** be marked. - 5. For each of the written-response questions, write your answer in the space provided in this booklet. - 6. When instructed to open this booklet, **check the numbering of the pages** to ensure that they are numbered in sequence from page one to the last page, which is identified by #### END OF EXAMINATION. 7. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor. #### **CHEMISTRY 12 PROVINCIAL EXAMINATION** | 1. | This examin | nation consists of two parts: | | Value | Suggested
Time | |----|-------------|--------------------------------------|--------|----------|-------------------| | | PART A: | 48 multiple-choice questions | | 48 | 70 | | | PART B: | 11 written-response questions | | 32 | 50 | | | | | Total: | 80 marks | 120 minutes | - 2. Aside from an approved calculator, electronic devices, including dictionaries and pagers, are **not** permitted in the examination room. - 3. The following tables can be found in the separate **Data Booklet**. - Periodic Table of the Elements - Atomic Masses of the Elements - Names, Formulae, and Charges of Some Common Ions - Solubility of Common Compounds in Water - Solubility Product Constants at 25°C - Relative Strengths of Brönsted-Lowry Acids and Bases - Acid-Base Indicators - Standard Reduction Potentials of Half-cells No other reference materials or tables are allowed. - 4. A calculator is essential for the Chemistry 12 Provincial Examination. The calculator must be a hand-held device designed primarily for mathematical computations involving logarithmic and trigonometric functions and may also include graphing functions. Computers, calculators with a QWERTY keyboard, and electronic writing pads will not be allowed. Students must not bring any external support devices such as manuals, printed or electronic cards, printers, memory expansion chips, or external keyboards. Students may have more than one calculator available during the examination, but calculators may not be shared. Communication between calculators is prohibited and calculators must not have the ability to either transmit or receive electronic signals. In addition to an approved calculator, students will be allowed to use rulers, compasses, and protractors during the examination. - 5. The time allotted for this examination is **two hours**. Value: 48 marks Suggested Time: 70 minutes #### **INSTRUCTIONS:** For each question, select the **best** answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer. - 1. Which of the following can be used to represent the rate of a reaction? - A. $\frac{g}{I}$ - B. $\frac{g}{\text{mol}}$ - C. $\frac{g \cdot \min}{\text{mol}}$ - D. $\frac{\text{mol}}{\text{L} \cdot \text{min}}$ - 2. Consider the following reaction: $$2H_2O_{2(\ell)} \rightarrow 2H_2O_{(\ell)} + O_{2(g)}$$ Which graph shows the relationship between rate of consumption of H_2O_2 and time? A. B. C. D. #### 3. Consider the following reaction: $$Mg_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + MgCl_{2(aq)}$$ The rate of this reaction increases when more magnesium is added. This change is caused by the - A. addition of a catalyst. - B. increase in surface area. - C. change in nature of the reactants. - D. increase in concentration of reactants. #### 4. Consider the following PE diagram: Progress of the reaction Which of the following describes the forward reaction? | | $\Delta \mathrm{H} \ \mathrm{(kJ)}$ | ACTIVATION
ENERGY (kJ) | | |----|-------------------------------------|---------------------------|--| | A. | +50 | 250 | | | B. | -50 | 200 | | | C. | -50 | 150 | | | D. | +50 | 150 | | 5. Which graph shows the relationship between activation energy (E_a) and temperature? A. В. C. D. - 6. A catalyst changes the rate of a reaction by - A. changing ΔH . - B. increasing the temperature. - C. decreasing the energy of the products. - D. providing an alternate reaction mechanism. - 7. Consider the following reaction: $$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} + energy$$ Which of the following describes the changes in enthalpy and entropy as the reaction proceeds? | | ENTHALPY | ENTROPY | |----|-----------|-----------| | A. | increases | decreases | | B. | increases | increases | | C. | decreases | decreases | | D. | decreases | increases | 8. Consider the following equilibrium: $$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} + energy$$ Which of the following will cause this equilibrium to shift to the left? - A. adding a catalyst - B. adding some SO₂ - C. increasing the volume - D. decreasing the temperature - 9. Methanol, CH₃OH, can be produced by the following: $$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} + energy$$ The conditions that are necessary to maximize the equilibrium yield of CH₃OH are - A. low temperature and low pressure. - B. high temperature and low pressure. - C. low temperature and high pressure. - D. high temperature and high pressure. - 10. A catalyst is added to a system already at equilibrium. How are the forward and reverse reaction rates affected by the addition of the catalyst? | | FORWARD RATE | REVERSE RATE | |----|------------------|------------------| | A. | increases | increases | | B. | increases | remains constant | | C. | remains constant | decreases | | D. | remains constant | remains constant | 11. Consider the following reaction: $$2H_{2(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(l)}$$ What is the equilibrium constant expression for the reaction? A. $$K_{eq} = [H_2]^2 [O_2]$$ B. $$K_{eq} = \frac{[H_2]^2[O_2]}{[H_2O]^2}$$ C. $$K_{eq} = \frac{[H_2O]^2}{[H_2]^2[O_2]}$$ D. $$K_{eq} = \frac{1}{[H_2]^2 [O_2]}$$ 12. The relationship between K_{eq} and temperature for an exothermic reaction is represented by A. В C. D. #### 13. Consider the following equilibrium: $$2NOBr_{(g)} \rightleftharpoons 2NO_{(g)} + Br_{2(g)}$$ $K_{eq} = 6.4 \times 10^{-2}$ At equilibrium, a $1.00\,L$ flask contains $0.030\,mol$ NOBr and $0.030\,mol$ NO. How many mol $\,Br_2$ are present? - A. $1.9 \times 10^{-3} \text{ mol}$ - B. 6.4×10^{-2} mol - C. 3.0×10^{-2} mol - D. $4.7 \times 10^{-1} \text{ mol}$ ## 14. The ion concentrations in $2.00\,L$ of $0.32\,M$ K_3PO_4 are | | $\left[\mathrm{K}^{+}\right]$ | [PO ₄ ³⁻] | |----|-------------------------------|----------------------------------| | A. | 0.16M | 0.16M | | B. | 0.32M | $0.32\mathrm{M}$ | | C. | 0.48M | 0.16M | | D. | 0.96M | 0.32 M | ## 15. Which of the following compounds is the least soluble in water? - A. CaS - B. $Fe(OH)_3$ - C. KMnO₄ - D. NH₄HC₂O₄ - 16. A solution contains two cations, each having a concentration of 0.20 M. When an equal volume of 0.20 M OH⁻ is added, these cations are removed from the solution by precipitation. These ions are - A. Ba²⁺ and K⁺ - B. Sr²⁺ and Na⁺ - C. Mg^{2+} and Sr^{2+} - D. Mg^{2+} and Ca^{2+} - 17. The solubility of Mn(IO₃)₂ is 4.8×10^{-3} M. What is the value of K_{sp}? - A. 1.1×10^{-7} - B. 4.4×10^{-7} - C. 7.1×10^{-6} - D. 1.1×10^{-1} - 18. The maximum $\left[SO_4^{\ 2^-} \right]$ that can exist in 1.0×10^{-3} M $Ca(NO_3)_2$ without a precipitate forming is - A. 7.1×10^{-5} M - B. 1.0×10^{-3} M - C. 8.4×10^{-3} M - D. 7.1×10^{-2} M - 19. A 1.0×10^{-4} M solution has a pH of 10.00. The solute is a - A. weak acid. - B. weak base. - C. strong acid. - D. strong base. 20. Consider the following Brönsted-Lowry equilibrium system: $$HSO_3^- + H_2PO_4^- \rightleftharpoons SO_3^{2-} + H_3PO_4$$ - What are the two Brönsted-Lowry bases in the equilibrium above? - A. HSO_3^- and SO_3^{2-} - B. $H_2PO_4^-$ and SO_3^{2-} - C. HSO_3^- and H_3PO_4 - D. $H_2PO_4^-$ and H_3PO_4 - 21. The equation representing the predominant reaction of sodium ethanoate, NaCH₃COO, with water is - A. $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$ - B. $CH_3COO^- + H_2O \rightleftharpoons H_3O^+ + CH_2COO^{2-}$ - C. $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$ - D. $CH_3COOH + H_2O \rightleftharpoons CH_3COOH_2^+ + OH^-$ - 22. Which of the following solutions will have the lowest electrical conductivity? - A. 0.1M HF - B. 0.1M NaF - C. $0.1M H_2SO_3$ - D. 0.1M NaHSO₃ - 23. Which of the following is the strongest Brönsted-Lowry base? - A. NH₃ - B. CO₃²⁻ - C. HSO₃ - D. $H_2BO_3^-$ 24. Consider the following: | | Ion | |------|----------------------------------| | I. | HCO ₃ | | II. | $\mathrm{H_2PO_4}^-$ | | III. | CH ₃ COO ⁻ | The amphiprotic ions are - A. I and II only. - B. I and III only. - C. II and III only. - D. I, II, III. - 25. The ionization of water at room temperature is represented by - A. $H_2O \rightleftharpoons 2H^+ + O^{2-}$ - B. $2H_2O \rightleftharpoons 2H_2 + O_2$ - C. $2H_2O \rightleftharpoons H_2 + 2OH^-$ - D. $2H_2O \rightleftharpoons H_3O^+ + OH^-$ - 26. Addition of HCl to water causes - A. both $[H_3O^+]$ and $[OH^-]$ to increase. - B. both $\left[H_3 O^+ \right]$ and $\left[OH^- \right]$ to decrease. - C. $\left[H_3O^+\right]$ to increase and $\left[OH^-\right]$ to decrease. - D. $\left[H_3O^+\right]$ to decrease and $\left[OH^-\right]$ to increase. 27. Which of the following graphs describes the relationship between $[H_3O^+]$ and $[OH^-]$ in aqueous solutions at a constant temperature? A. B. C. D. 28. Consider the following: | I. | H_2SO_4 | |------|-------------------------------| | II. | ${ m HSO_4}^-$ | | III. | SO ₄ ²⁻ | Which of the above is/are present in a reagent bottle labelled $1.0\,\mathrm{M}\ \mathrm{H}_2\mathrm{SO}_4$? - A. I only - B. I and II only - C. II and III only - D. I, II and III - 29. The pH of a 0.10 M KOH solution is - A. 0.10 - B. 1.00 - C. 13.00 - D. 14.10 30. The equilibrium expression for the predominant reaction between the hydrogen oxalate ion, $HC_2O_4^-$, and water is A. $$K_a = \frac{\left[C_2O_4^{2-}\right]\left[H_3O^+\right]}{\left[HC_2O_4^{-1}\right]}$$ B. $$K_b = \frac{[HC_2O_4^-]}{[C_2O_4^{2-}][OH^-]}$$ C. $$K_a = \frac{\left[HC_2O_4^{-1}\right]\left[H_3O^{+1}\right]}{\left[C_2O_4^{2-1}\right]}$$ D. $$K_b = \frac{\left[H_2C_2O_4\right]\left[OH^-\right]}{\left[HC_2O_4^-\right]}$$ - 31. Which of the following salts will dissolve in water to produce a neutral solution? - A. LiF - B. CrCl₃ - C. KNO₃ - D. NH₄Cl - 32. An indicator changes colour in the pH range 9.0 to 11.0. What is the value of K_a for the indicator? - A. 1×10^{-13} - B. 1×10^{-10} - C. 1×10^{-7} - D. 1×10^{1} - 33. Which of the following always applies at the transition point for the indicator HInd? - A. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{OH}^{-}\right]$ - B. $\left[HInd \right] = \left[Ind^{-} \right]$ - C. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{H}_{3}\operatorname{O}^{+}\right]$ - D. $\left[\text{HInd} \right] = \left[\text{H}_3 \text{O}^+ \right]$ - 34. Calculate the $\left[H_3O^+\right]$ of a solution prepared by adding 10.0 mL of 2.0 M HCl to 10.0 mL of 1.0 M NaOH. - A. 0.020 M - B. 0.50 M - C. 1.0 M - D. 2.0 M - 35. Consider the following: | I. | H_3O^+ | |------|----------------------------------| | II. | CH ₃ COO ⁻ | | III. | CH₃COOH | The purpose of a buffer system consisting of $\mathrm{CH_3COOH}$ and $\mathrm{CH_3COONa}$ is to maintain a relatively constant concentration of - A. I only. - B. I and II only. - C. II and III only. - D. I, II and III. - 36. Which of the following, when dissolved in water, will produce an acidic solution? - A. SrO - B. NO_2 - C. CaO - D. Na₂O - 37. Which of the following is capable of acting both as an oxidizing agent and a reducing agent? - $A. H^+$ - B. Na⁺ - C. Sn²⁺ - D. MnO_4^- - 38. Consider the following redox reaction: $$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$ The substance undergoing reduction is - A. O_2 - B. CO₂ - C. H₂O - D. $C_6H_{12}O_6$ - 39. The oxidation number of P in $H_4P_2O_7$ is - A. -10 - В. –5 - C. +5 - D. +10 - 40. A solution containing an unknown cation reacts spontaneously with both zinc and copper. The unknown cation is - A. 1.0 M H⁺ - B. 1.0 M Ag⁺ - C. 1.0 M Sr²⁺ - D. 1.0 M Mn²⁺ - 41. Which of the following half-reactions is balanced? - A. $ClO^- + H_2O + e^- \rightarrow Cl_2 + 2OH^-$ - B. $2\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 3\text{OH}^-$ - C. $2\text{ClO}^- + 2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 4\text{OH}^-$ - D. $2\text{ClO}^- + 2\text{H}_2\text{O} \rightarrow \text{Cl}_2 + 4\text{OH}^- + 2\text{e}^-$ - 42. Which of the following is a spontaneous redox reaction? - A. $Ag^+ + I^- \rightarrow AgI$ - B. $Ag^+ + Fe^{2+} \rightarrow Ag + Fe^{3+}$ - C. $3Ag^+ + Au \rightarrow 3Ag + Au^{3+}$ - D. $2Ag^+ + Ni^{2+} \rightarrow 2Ag + Ni$ - 43. Salting of roads during the winter increases the corrosion of cars. This is because the salt - A. reacts with the iron. - B. provides an electrolyte. - C. acts as a reducing agent. - D. acts as an oxidizing agent. - 44. Which of the following will **not** react spontaneously with 1.0 M HC1? - A. tin - B. lithium - C. mercury - D. aluminum ### 45. Consider the following electrochemical cell: The half-reaction that occurs at the anode is - A. $Ni \rightarrow Ni^{2+} + 2e^{-}$ - B. $Ni^{2+} + 2e^- \rightarrow Ni$ - C. $Cu \rightarrow Cu^{2+} + 2e^{-}$ - D. $Cu^{2+} + 2e^{-} \rightarrow Cu$ - 46. Which of the following can be produced by electrolysis from a 1.0 M aqueous solution containing its ion? - A. nickel - B. sodium - C. aluminum - D. magnesium - 47. In the electrolysis of molten ZnCl₂ using carbon electrodes, the reaction that occurs at the anode is - A. $Zn \rightarrow Zn^{2+} + 2e^{-}$ - B. $Zn^{2+} + 2e^- \rightarrow Zn$ - C. $2Cl^- \rightarrow Cl_2 + 2e^-$ - D. $Cl_2 + 2e^- \rightarrow 2Cl^-$ - 48. In order for an electrolytic cell to operate, it must have - A. a voltmeter. - B. a salt bridge. - C. a power supply. - D. an aqueous solution. This is the end of the multiple-choice section. Answer the remaining questions directly in this examination booklet. #### PART B: WRITTEN RESPONSE Value: 32 marks Suggested Time: 50 minutes #### **INSTRUCTIONS:** You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner. Your steps and assumptions leading to a solution must be written in the spaces below the questions. Answers must include units where appropriate and be given to the correct number of significant figures. For questions involving calculation, full marks will NOT be given for providing only an answer. 1. Consider the following KE distribution curve for colliding particles: - a) On the diagram above, sketch a line for the distribution of collisions at a higher temperature. (2 marks) - b) Shade in the area representing the collisions that could result in forming an activated complex at the lower temperature. (1 mark) 2. Consider the following equilibrium system: $$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + energy$$ A 1.00 L container is filled with $5.0\,\mathrm{mol}\ \mathrm{NH_3}$ and the system proceeds to equilibrium as indicated by the graph. a) Draw and label the graph for N_2 and H_2 . (2 marks) b) Calculate the K_{eq} for $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$. (2 marks) | 3. | State Le Chatelier's Principle. | (2 marks) | |----|---|-----------| 4. | Write the net ionic equation representing the reaction that occurs when 50.0 mL of 0.20 M ZnSO ₄ and 50.0 mL of 0.20 M BaS are combined. | (2 marks) | | 6. | e
k marks) | |----|---------------| - 7. A $1.00\,\mathrm{M}$ OCl⁻ solution has an [OH⁻] of $5.75\times10^{-4}\,\mathrm{M}$. - a) Calculate K_b for OCl^- . (3 marks) b) Calculate K_a for HOCl. (1 mark) | 8. | Calculate the mass of NaOH needed to prepare 2.0 L of a solution with a pH of 12 | 2.00.
(3 marks) | |----|--|--------------------| 9. The data below were obtained in a redox titration of a 25.00 mL sample containing $\rm Sn^{2+}$ ions using 0.125 M KMnO₄ according to the following reaction: $$2MnO_4^- + 16H^+ + 5Sn^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 5Sn^{4+}$$ | | Volume of KMnO ₄ used (mL) | | | |-----------------------|---------------------------------------|----------|----------| | | Trial #1 | Trial #2 | Trial #3 | | Initial buret reading | 2.00 | 13.80 | 24.55 | | Final buret reading | 13.80 | 24.55 | 35.32 | Calculate the $\left[Sn^{2+} \right]$ in the original sample. (4 marks) ### 10. Consider the following electrochemical cell: a) Calculate the initial cell voltage. (1 mark) b) What is the purpose of the salt bridge? (1 mark) _____ | 11. | Consider the electrolysis of 1.0 M H ₂ SO ₄ using inert platinum electrodes. | | |-----|--|----------| | | a) Write the oxidation half-reaction. | (1 mark) | b) Write the reduction half-reaction. | (1 mark) | **END OF EXAMINATION** ## **CHEMISTRY 12** **June 1999** Course Code = CH ## FOR OFFICE USE ONLY ## **CHEMISTRY 12** **June 1999** Course Code = CH Score for Question 1: 1. _____ Score for Question 7: 7. ____ Score for Question 2: 2. _____ Score for Question 8: 8. _____ Score for Question 3: 3. (2) Score for Question 9: 9. ____ Score for Question 4: 4. (2) Score for Question 10: 10. ____ Score for Question 5: 5. _____ Score for Question 11: 11. ____(2) Score for Question 6: ## **CONTENTS** | PAGE | TABLE | |------|--| | 1 | Periodic Table of the Elements | | 2 | Atomic Masses of the Elements | | 3 | Names, Formulae, and Charges of Some Common Ions | | 4 | Solubility of Common Compounds in Water | | 5 | Solubility Product Constants at 25°C | | 6 | Relative Strengths of Brönsted-Lowry Acids and Bases | | 7 | Acid-Base Indicators | | 8 | Standard Reduction Potentials of Half-Cells | #### REFERENCE | 1 | | PERIODIC TABLE OF THE ELEMENTS | | | | | | | | | | | 18 | | | | | |---------------------|---|--------------------------------|---------------------|-----------------|-----------------------|---------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|-------------------|------------------|--------------------|-------------------| | Hydrogen | | | | | | | | | | | | | | | | | 2
He
Helium | | | 2 | ı | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 4.0 | | 3 | 4 | | | | | 14 - | Aton | nic number | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li
Lithium | Be
Beryllium | | | | | Si - | Sym | | | | | В | C | N | 0 | F | Ne | | 6.9 | 9.0 | Sincon rune no | | | | | | | | | | Neon
20.2 | | | | | | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | Al | Si | P | S | Cl | Ar | | Sodium | Magnesium | | | _ | _ | _ | | | | | | Aluminum 27.0 | Silicon
28.1 | Phosphorus 31.0 | Sulphur
32.1 | Chlorine
35.5 | Argon
39.9 | | 23.0 | 24.3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | - | | | | | 19
K | Ca | 21
Sc | 22
Ti | 23
V | Cr | 25
Mn | Fe | 27
Co | 28
Ni | Cu | 30
Z n | Ga 31 | Ge 32 | 33
As | 34
Se | 35
Br | 36
Kr | | Potassium | Calcium | Scandium | I I Titanium | V
Vanadium | Chromium | Manganese | | Cobalt | Nickel | Cu | Zinc | Gallium | Germanium | Arsenic | Selenium | Bromine | Krypton | | 39.1 | 40.1 | 45.0 | 47.9 | 50.9 | 52.0 | 54.9 | 55.8 | 58.9 | 58.7 | 63.5 | 65.4 | 69.7 | 72.6 | 74.9 | 79.0 | 79.9 | 83.8 | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb | Sr | Y | Zr | Nb | Мо | Тс | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | Rubidium
85.5 | Strontium
87.6 | Yttrium
88.9 | Zirconium
91.2 | Niobium
92.9 | Molybdenum
95.9 | Technetium (98) | Ruthenium
101.1 | Rhodium
102.9 | Palladium
106.4 | Silver
107.9 | Cadmium
112.4 | Indium
114.8 | Tin
118.7 | Antimony
121.8 | Tellurium 127.6 | Iodine
126.9 | Xenon
131.3 | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | T1 | Pb | Bi | Po | At | Rn | | Cesium | Barium | Lanthanum | Hafnium | Tantalum | Tungsten | Rhenium | Osmium | Iridium | Platinum | Gold | Mercury | Thallium | Lead | Bismuth | Polonium | Astatine | Radon | | 132.9 | 137.3 | 138.9 | 178.5 | 180.9 | 183.8 | 186.2 | 190.2 | 192.2 | 195.1 | 197.0 | 200.6 | 204.4 | 207.2 | 209.0 | (209) | (210) | (222) | | 87
Fr | 88
D c | 89
A o | 104
D.C | 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | Francium | Ra
Radium | Ac
Actinium | Rf
Rutherfordium | Ha
Hahnium | Sg
Seaborgium | Uns
Unnilseptium | Uno
Unniloctium | Une
Unnilennium | | | | | | | | | | | (223) | (226) | (227) | (261) | (262) | (263) | (262) | (265) | (266) | | | | | | | | | | | Based on | Based on mass of C^{12} at 12.00. | \ 1 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | | Values in masses of | | | est\ | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | | known iso | otopes for | elements | ~~\ | Cerium
140.1 | Praseodymium
140.9 | Neodymium
144.2 | Promethium (145) | Samarium
150.4 | Europium
152.0 | Gadolinium 157.3 | Terbium
158.9 | Dysprosium 162.5 | Holmium
164.9 | Erbium
167.3 | Thulium
168.9 | Ytterbium
173.0 | Lutetium
175.0 | | which do | not occur | naturally. | \ | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | | | | \ | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | | | | \l | Thorium | Protactinium | Uranium | Neptunium | Plutonium | Americium | Curium | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium | Lawrencium | | | 232.0 231.0 238.0 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262) | | | | | | | | | | | | | | | | | #### ATOMIC MASSES OF THE ELEMENTS Based on mass of C^{12} at 12.00. Values in parentheses are the mass of the most stable or best known isotopes for elements which do not occur naturally. | Element | Symbol Atomic Atomic Element Number Mass | | Symbol | Atomic
Number | Atomic
Mass | | | |----------------------|--|----------|----------------|---------------------|----------------|----------|---------------| | Actinium | Ac | 89 | (227) | Mercury | Hg | 80 | 200.6 | | Aluminum | Al | 13 | 27.0 | Molybdenum | Mo | 42 | 95.9 | | Americium | Am | 95 | (243) | Neodymium | Nd | 60 | 144.2 | | Antimony | Sb | 51 | 121.8 | Neon | Ne | 10 | 20.2 | | Argon | Ar | 18 | 39.9 | Neptunium | Np | 93 | (237) | | Arsenic | As | 33 | 74.9 | Nickel | Ni | 28 | 58.7 | | Astatine | At | 85 | (210) | Niobium | Nb | 41 | 92.9 | | Barium | Ba | 56 | 137.3 | Nitrogen | N | 7 | 14.0 | | Berkelium | Bk | 97 | (247) | Nobelium | No | 102 | (259) | | Beryllium | Be | 4 | 9.0 | Osmium | Os | 76 | 190.2 | | Bismuth | Bi | 83 | 209.0 | Oxygen | O | 8 | 16.0 | | Boron | В | 5 | 10.8 | Palladium | Pd | 46 | 106.4 | | Bromine | Br | 35 | 79.9 | Phosphorus | P | 15 | 31.0 | | Cadmium | Cd | 48 | 112.4 | Platinum | Pt | 78 | 195.1 | | Calcium | Ca | 20 | 40.1 | Plutonium | Pu | 94 | (244) | | Californium | Cf | 98 | (251) | Polonium | Po | 84 | (209) | | Carbon | C | 6 | 12.0 | Potassium | K | 19 | 39.1 | | Cerium | Ce | 58 | 140.1 | Praseodymium | Pr | 59 | 140.9 | | Cesium | Cs | 55 | 132.9 | Promethium | Pm | 61 | (145) | | Chlorine | Cl | 17 | 35.5 | Protactinium | Pa | 91 | 231.0 | | Chromium | Cr | 24 | 52.0 | Radium | Ra | 88 | (226) | | Cobalt | Co | 27 | 58.9 | Radon | Rn | 86 | (222) | | Copper | Cu | 29 | 63.5 | Rhenium | Re | 75 | 186.2 | | Curium | Cm | 96 | (247) | Rhodium | Rh | 45 | 102.9 | | Dysprosium | Dy | 66 | 162.5 | Rubidium | Rb | 37 | 85.5 | | Einsteinium | Es | 99 | (252) | Ruthenium | Ru | 44 | 101.1 | | Erbium | Er | 68 | 167.3 | Rutherfordium | Rf | 104 | (261) | | Europium | Eu | 63 | 152.0 | Samarium | Sm | 62 | 150.4 | | Fermium | Fm | 100 | (257) | Scandium | Sc | 21 | 45.0 | | Fluorine | F | 9 | 19.0 | Selenium | Se | 34 | 79.0 | | Francium | Fr | 87 | (223) | Silicon | Si | 14 | 28.1 | | Gadolinium | Gd | 64 | 157.3 | Silver | Ag | 47 | 107.9 | | Gadonnum | Ga | 31 | 69.7 | Sodium | Na | 11 | 23.0 | | Germanium | Ge | 32 | 72.6 | Strontium | Sr | 38 | 23.0
87.6 | | Gold | Au | 79 | 197.0 | Sulphur | S | 16 | 32.1 | | Hafnium | Hf | 72 | 178.5 | Tantalum | Ta | 73 | 180.9 | | Hahnium | Ha | 105 | (262) | Technetium | Tc | 43 | | | Helium | He | 2 | 4.0 | Tellurium | Te | 52 | (98)
127.6 | | Holmium | Но | 67 | 164.9 | Terbium | Tb | 65 | 158.9 | | Hydrogen | H | 1 | 1.0 | Thallium | Tl | 81 | 204.4 | | Indium | In | 49 | 114.8 | Thorium | Th | 90 | 232.0 | | Iodine | I | 53 | 126.9 | Thulium | Tm | 69 | 168.9 | | Iridium | I
Ir | 33
77 | 192.2 | Tin | Sn | 50 | | | | ir
Fe | 26 | 55.8 | Titanium | Sn
Ti | 22 | 118.7
47.9 | | Iron | re
Kr | 26
36 | 55.8
83.8 | | W | 22
74 | 183.8 | | Krypton
Lanthanum | Kr
La | 50
57 | 83.8
138.9 | Tungsten
Uranium | W
U | 92 | 238.0 | | Lantnanum | La
Lr | 103 | | Vanadium | V | 23 | | | | Lr
Pb | | (262)
207.2 | Xenon | | 23
54 | 50.9 | | Lead | Pb
Li | 82 | | Ytterbium | Xe
Yb | 54
70 | 131.3 | | Lithium | | 3
71 | 6.9 | | | | 173.0 | | Lutetium | Lu | 71 | 175.0 | Yttrium | Y | 39 | 88.9 | | Magnesium | Mg | 12 | 24.3 | Zinc | Zn | 30 | 65.4 | | Manganese | Mn | 25 | 54.9 | Zirconium | Zr | 40 | 91.2 | | Mendelevium | Md | 101 | (258) | | | | | ### NAMES, FORMULAE, AND CHARGES OF SOME COMMON IONS | Positive ions (ca | tions) | Negative ions (anions) | | | |-------------------------------------|--------------------------------------|---------------------------------|----------------------------------|--| | Aluminum | Al^{3+} | Bromide | Br ⁻ | | | Ammonium | $NH_4^{}$ | Carbonate | CO_3^{2-} | | | Barium | Ba^{2+} | Chlorate | ClO ₃ | | | Calcium | Ca ²⁺ | Chloride | Cl ⁻ | | | Chromium(II), chromous | Cr ²⁺ | Chlorite | ClO ₂ | | | Chromium(III), chromic | Cr ³⁺ | Chromate | CrO_2 CrO_4^{2-} | | | Copper(I)*, cuprous | Cu^+ | | • | | | Copper(II), cupric | Cu^{2+} | Cyanide | CN ⁻ | | | Hydrogen | H^+ | Dichromate | $\operatorname{Cr_2O_7}^{2-}$ | | | Hydronium | H_3O^+ | Dihydrogen phosphate | $\mathrm{H_2PO_4}^-$ | | | Iron(II)*, ferrous | Fe^{2+} | Ethanoate, Acetate | CH ₃ COO ⁻ | | | Iron(III), ferric | Fe ³⁺ | Fluoride | F^- | | | Lead(II), plumbous | Pb^{2+} | Hydrogen carbonate, bicarbonate | HCO ₃ | | | Lead(IV), plumbic | Pb ⁴⁺ | Hydrogen oxalate, binoxalate | $HC_2O_4^{-}$ | | | Lithium | $\mathrm{Li}^{\scriptscriptstyle +}$ | Hydrogen sulphate, bisulphate | HSO ₄ | | | Magnesium | Mg^{2+} | Hydrogen sulphide, bisulphide | HS ⁻ | | | Manganese(II), manganous | Mn ²⁺ | Hydrogen sulphite, bisulphite | HSO ₃ | | | Manganese(IV) | Mn ⁴⁺ | | | | | Mercury(I)*, mercurous | ${\rm Hg_2}^{2+}$ | Hydroxide | OH ⁻ | | | Mercury(II), mercuric | Hg^{2+} | Hypochlorite | ClO- | | | Potassium | \mathbf{K}^{+} | Iodide | Ι- | | | Silver | Ag^+ | Monohydrogen phosphate | HPO_4^{2-} | | | Sodium | Na ⁺ | Nitrate | NO_3^- | | | Tin(II)*, stannous | Sn ²⁺ | Nitrite | NO_2^- | | | Tin(IV), stannic | Sn ⁴⁺ | Oxalate | $C_2O_4^{2-}$ | | | Zinc | Zn^{2+} | Oxide** | O^{2-} | | | * Aqueous solutions are readily or | kidized by air. | Perchlorate | ClO ₄ | | | ** Not stable in aqueous solutions. | | Permanganate | $\mathrm{MnO_4}^-$ | | | | | Phosphate | PO_4^{3-} | | | | | Sulphate | SO_4^{2-} | | | | | Sulphide | S^{2-} | | | | | Sulphite | SO_3^{2-} | | | | | Thiocyanate | SCN^- | | #### SOLUBILITY OF COMMON COMPOUNDS IN WATER The term soluble here means $> 0.1 \ mol/L \ at \ 25^{o}C$. | NEGATIVE IONS
(Anions) | POSITIVE IONS (Cations) | SOLUBILITY OF COMPOUNDS | | |--|--|-------------------------|--| | All | Alkali ions:
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺ | Soluble | | | All | Hydrogen ion, H ⁺ | Soluble | | | All | Ammonium ion, NH ₄ ⁺ | Soluble | | | Nitrate, NO ₃ ⁻ | All | Soluble | | | Chloride, Cl or Bromide, Br | All others | Soluble | | | or Iodide, I | Ag ⁺ , Pb ²⁺ , Cu ⁺ | Low Solubility | | | Sulphate, SO_4^{2-} | All others | Soluble | | | Sulphate, 50 ₄ | Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ | Low Solubility | | | Sulphide, S ²⁻ | Alkali ions, H^+ , NH_4^+ , Be^{2+} Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} | Soluble | | | | All others | Low Solubility | | | H 1 11 0H | Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺ | Soluble | | | Hydroxide, OH | All others | Low Solubility | | | Phosphate, PO ₄ ³⁻ or Carbonate, CO ₃ ²⁻ | Alkali ions, H ⁺ , NH ₄ ⁺ | Soluble | | | or Sulphite, SO_3^{2-} | All others | Low Solubility | | ### SOLUBILITY PRODUCT CONSTANTS AT 25°C | Name | Formula | \mathbf{K}_{sp} | |---------------------|-----------------------------------|-----------------------| | barium carbonate | BaCO ₃ | 2.6×10^{-9} | | barium chromate | BaCrO ₄ | 1.2×10^{-10} | | barium sulphate | ${ m BaSO}_4$ | 1.1×10^{-10} | | calcium carbonate | CaCO ₃ | 5.0×10^{-9} | | calcium oxalate | CaC ₂ O ₄ | 2.3×10 ⁻⁹ | | calcium sulphate | CaSO ₄ | 7.1×10^{-5} | | copper(I) iodide | CuI | 1.3×10^{-12} | | copper(II) iodate | Cu(IO ₃) ₂ | 6.9×10^{-8} | | copper(II) sulphide | CuS | 6.0×10^{-37} | | iron(II) hydroxide | Fe(OH) ₂ | 4.9×10^{-17} | | iron(II) sulphide | FeS | 6.0×10^{-19} | | iron(III) hydroxide | Fe(OH) ₃ | 2.6×10^{-39} | | lead(II) bromide | PbBr ₂ | 6.6×10^{-6} | | lead(II) chloride | PbCl ₂ | 1.2×10^{-5} | | lead(II) iodate | Pb(IO ₃) ₂ | 3.7×10^{-13} | | lead(II) iodide | PbI ₂ | 8.5×10^{-9} | | lead(II) sulphate | PbSO ₄ | 1.8×10^{-8} | | magnesium carbonate | MgCO ₃ | 6.8×10^{-6} | | magnesium hydroxide | $Mg(OH)_2$ | 5.6×10^{-12} | | silver bromate | ${\rm AgBrO_3}$ | 5.3×10^{-5} | | silver bromide | AgBr | 5.4×10^{-13} | | silver carbonate | Ag_2CO_3 | 8.5×10^{-12} | | silver chloride | AgCl | 1.8×10^{-10} | | silver chromate | Ag ₂ CrO ₄ | 1.1×10^{-12} | | silver iodate | AgIO ₃ | 3.2×10^{-8} | | silver iodide | AgI | 8.5×10^{-17} | | strontium carbonate | SrCO ₃ | 5.6×10^{-10} | | strontium fluoride | SrF ₂ | 4.3×10^{-9} | | strontium sulphate | SrSO ₄ | 3.4×10^{-7} | | zinc sulphide | ZnS | 2.0×10^{-25} | #### RELATIVE STRENGTHS OF BRÖNSTED-LOWRY ACIDS AND BASES in aqueous solution at room temperature | Strength of Acid | Name of Acid | Acid | Base K _a | Strength of Base | |------------------|---|--|--|------------------| | Strong | Perchloric | $HClO_4 \rightarrow$ | $H^+ + ClO_4^-$ very large | Weak | | 1 | Hydriodic | • | $H^+ + I^-$ very large | | | | Hydrobromic | | $H^+ + Br^-$ very large | | | | Hydrochloric | | $H^+ + Cl^-$ very large | | | | Nitric | | $H^+ + NO_3^-$ very large | | | | Sulphuric | , | $H^+ + HSO_4^-$ very large | | | | Hydronium Ion | 2 . | $H^+ + H_2O$ | | | | Iodic | 5 | $H^+ + IO_3^-$ 1.7×10 ⁻¹ | | | | Oxalic | | $H^+ + HC_2O_4^-$ 5.9×10 ⁻² | | | | Sulphurous $(SO_2 + H_2O)$ | | $H^+ + HSO_3^ 1.5 \times 10^{-2}$ | | | | Hydrogen sulphate ion | | $H^+ + SO_4^{2-}$ 1.2×10^{-2} | | | | Phosphoric | • | $H^+ + H_2PO_4^-$ 7.5×10 ⁻³ | | | | Hexaaquoiron ion, iron(III) ion | $Fe(H_2O)^{3+} \iff$ | $H^+ + Fe(H_2O)_5(OH)^{2+}$ 6.0×10 ⁻³ | ; | | | Citric | ` '0 | $H^+ + H_2C_6H_5O_7^-$ 7.1×10 ⁻⁴ | | | | Nitrous | 5 0 5 7 | $H^+ + NO_2^ 4.6 \times 10^{-2}$ | | | | Hydrofluoric | $_{\mathrm{HF}}\overset{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}$ | $H^+ + F^- = 3.5 \times 10^{-4}$ | , | | | Methanoic, formic | нсоон ↔ | $H^+ + HCOO^- \dots 1.8 \times 10^{-4}$ | | | | Hexaaquochromium ion, chromium(III) ion | $Cr(H_2O)_6^{3+} \iff$ | $H^+ + Cr(H_2O)_5(OH)^{2+} \dots 1.5 \times 10^{-4}$ | | | | Benzoic | , , , | $H^+ + C_6 H_5 COO^-$ 6.5×10 ⁻⁵ | | | | Hydrogen oxalate ion | | $H^+ + C_2O_4^{2-}$ 6.4×10 ⁻⁵ | | | | Ethanoic, acetic | CH₃COOH ← | $H^+ + CH_3COO^-$ 1.8×10 ⁻⁵ | | | | Dihydrogen citrate ion | $H_2C_6H_5O_7^- \iff$ | $H^+ + HC_6H_5O_7^{2-}$ 1.7×10 ⁻⁵ | | | | Hexaaquoaluminum ion, aluminum ion | $Al(H_2O)_6^{3+} \iff$ | $H^+ + Al(H_2O)_5(OH)^{2+} \dots 1.4 \times 10^{-5}$ | | | | Carbonic $(CO_2 + H_2O)$ | | $H^+ + HCO_3^- \dots 4.3 \times 10^{-7}$ | | | | Monohydrogen citrate ion | $HC_6H_5O_7^{2-} \iff$ | $H^+ + C_6 H_5 O_7^{3-} \dots 4.1 \times 10^{-7}$ | | | | Hydrogen sulphite ion | $HSO_3^- \iff$ | $H^+ + SO_3^{2-}$ 1.0×10^{-7} | | | | Hydrogen sulphide | $H_2S \iff$ | $H^+ + HS^- \dots 9.1 \times 10^{-8}$ | | | | Dihydrogen phosphate ion | $H_2PO_4^- \iff$ | $H^+ + HPO_4^{2-}$ 6.2×10 ⁻⁸ | 3 | | | Boric | $H_3BO_3 \iff$ | $H^+ + H_2BO_3^-$ 7.3×10 ⁻¹ | .0 | | | Ammonium ion | $NH_4^+ \iff$ | $H^+ + NH_3$ 5.6×10 ⁻¹ | .0 | | | Hydrocyanic | $HCN \iff$ | $H^+ + CN^- \dots 4.9 \times 10^{-1}$ | 10 | | | Phenol | $C_6H_5OH \iff$ | $H^+ + C_6 H_5 O^- \dots 1.3 \times 10^{-10}$ | 0 | | | Hydrogen carbonate ion | $HCO_3^- \iff$ | $H^+ + CO_3^{2-}$ 5.6×10 ⁻¹ | .1 | | | Hydrogen peroxide | $H_2O_2 \iff$ | $H^+ + HO_2^-$ 2.4×10 ⁻¹ | 12 | | | Monohydrogen phosphate ion | $HPO_4^{2-} \iff$ | $H^+ + PO_4^{3-} \dots 2.2 \times 10^{-1}$ | 13 | | | Water | $H_2O \iff$ | $H^+ + OH^- \dots 1.0 \times 10^{-1}$ | 4 | | | Hydroxide ion | OH⁻ ← | $H^+ + O^{2-}$ very small | I | | | Ammonia | $NH_3 \leftarrow$ | $H^+ + NH_2^-$ very small | ı | | Weak | | | | Strong | #### **ACID-BASE INDICATORS** | INDICATOR | pH RANGE IN WHICH
COLOUR CHANGE OCCURS | COLOUR CHANGE AS pH
INCREASES | |------------------|---|----------------------------------| | Methyl violet | 0.0 – 1.6 | yellow to blue | | Thymol blue | 1.2 – 2.8 | red to yellow | | Orange IV | 1.4 – 2.8 | red to yellow | | Methyl orange | 3.2 - 4.4 | red to yellow | | Bromcresol green | 3.8 - 5.4 | yellow to blue | | Methyl red | 4.8 – 6.0 | red to yellow | | Chlorophenol red | 5.2 - 6.8 | yellow to red | | Bromthymol blue | 6.0 – 7.6 | yellow to blue | | Phenol red | 6.6 - 8.0 | yellow to red | | Neutral red | 6.8 - 8.0 | red to amber | | Thymol blue | 8.0 – 9.6 | yellow to blue | | Phenolphthalein | 8.2 - 10.0 | colourless to pink | | Thymolphthalein | 9.4 – 10.6 | colourless to blue | | Alizarin yellow | 10.1 – 12.0 | yellow to red | | Indigo carmine | 11.4 – 13.0 | blue to yellow | ### STANDARD REDUCTION POTENTIALS OF HALF-CELLS Ionic Concentrations are at 1M in Water at 25° C | STRENGTH OF
OXIDIZING AGENT | OXIDIZING AGENTS | | REDUCING AGENTS | E*(VOLTS) | STRENGTH OF
REDUCING AGENT | |--------------------------------|---|---|---|-----------|-------------------------------| | strong | | | 2F ⁻ | | weak | | ↑ | | | 2SO ₄ ²⁻ | | | | | | | 2H ₂ O | | | | | | | $Mn^{2+} + 4H_2O$ | | | | | $Au^{3+} + 3e^{-}$ | \rightleftharpoons | Au _(s) | +1.50 | | | | | | $\frac{1}{2}Br_{2(1)} + 3H_2O$ | | | | | | | $C1^- + 4H_2O$ | | _ | | | $Cl_{2(g)} + 2e^{-}$ | \rightleftharpoons | 2C1 ⁻ | +1.36 | | | | $Cr_2O_7^{2-} + 14H^+ + 6e^-$ | | | | gc | | | | | H ₂ O | | Overpotential Effect | | | | | $Mn^{2+} + 2H_2O$ | | i le | | | | | $\frac{1}{2} I_{2(s)} + 3H_2O \dots$ | | inti | | | = (-) | | 2Br ⁻ | | ote | | | | | $Au_{(s)} + 4C1^{-}$ | | : dr | | | $NO_3^- + 4H^+ + 3e^-$ | \rightleftharpoons | $NO_{(g)} + 2H_2O$ | +0.96 | | | | $Hg^{2+} + 2e^{-}$ | \rightleftharpoons | Hg _(l) | +0.85 | | | | $\frac{1}{2}$ O _{2(g)} + 2H ⁺ (10 ⁻⁷ M)+ 2e ⁻ | \rightleftharpoons | H ₂ O | +0.82 | "i | | | | | N ₂ O ₄ + 2H ₂ O | | | | | | | Ag _(s) | | | | | | | Hg ₍₁₎ | | | | | $Fe^{3+} + e^{-}$ | \rightleftharpoons | Fe ²⁺ | +0.77 | | | | | | H ₂ O ₂ | | | | | | | $MnO_{2(s)} + 4OH^{-}$ | | | | | | | 2I ⁻ | | | | | | | Cu _(s) | | | | | | | $S_{(s)} + 3H_2O$ | | | | | | | Cu _(s) | | | | | $SO_4^{2-} + 4H^+ + 2e^-$ | \rightarrow | $H_2SO_3 + H_2O$ | +0.17 | | | | | | Cu ⁺ | | | | | | | Sn ²⁺ | | | | | | | H ₂ S _(g) | | | | | | | H _{2(g)} | | | | | $Pb^{2+} + 2e^{-}$ | → | Pb _(s) | 0.13 | | | | $Sn^{2+} + 2e^{-}$ | \rightarrow | Sn _(s) | =0.14 | | | | $Ni^{2+} + 2e^{-}$ | \rightarrow | Ni _(s) | -0.26 | | | | $H_{2}PO_{4} + 2H^{+} + 2e^{-}$ | $\stackrel{\longleftarrow}{\leftarrow}$ | $H_3PO_3 + H_2O$ | -0.28 | | | | $Co^{2+} + 2e^{-}$ | | Co ₍₈₎ | | | | | | ` | H ₂ Se | | | | | 2.1 | | Cr ²⁺ | | | | | 2H ₂ O+ 2e ⁻ | • | $H_2 + 2OH^-(10^{-7}M)$ | | | | | \Box $Fe^{2+} + 2e^{-}$ | | Fe _(s) | | | | | $\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | | $2Ag_{(s)} + S^{2-}$ | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\operatorname{Cr}_{(s)}$ | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $\operatorname{Zn}_{(s)}$ | | | | | $Te_{(s)} + 2H^{+} + 2e^{-}$ | - | H ₂ Te | | | | | O 2H_O_ 2e- | | $H_{2(g)} + 2OH^{-}$ | | | | | | | Mn _(s) | | | | | | | Al _(s) | | | | | $M_{\alpha}^{2+} + 2e^{-}$ | $\stackrel{\leftarrow}{\rightarrow}$ | $Mg_{(s)}$ | -2 37 | | | | $N_2^+ \perp a^-$ | $\leftarrow \rightarrow$ | Na _(s) | -2 71 | | | | C_2^{2+} C_2^{2-} | $\leftarrow \rightarrow$ | Ca _(s) | -2 87 | | | | Sr2+ 20- | $\stackrel{\leftarrow}{\leftarrow}$ | $Sr_{(s)}$ | -2.80 | | | | R 2 ²⁺ + 22- | \leftarrow | Ba _(s) | -2 Q1 | | | | V+ | \leftarrow | K _(s) | -2 93 | | | | D b + | \leftarrow | Rb _(s) | -2.08 | | | | KD + e | ✓ | Cs _(s) | -2 02 | \downarrow | | weak | | | Cs _(s) | | strong | | Weak | LI + e | | L1(8) | 3.04 | |