

JUNE 1999

PROVINCIAL EXAMINATION

MINISTRY OF EDUCATION

CHEMISTRY 12

GENERAL INSTRUCTIONS

- 1. Insert the stickers with your Student I.D. Number (PEN) in the allotted spaces above and on the back cover of this booklet. Under no circumstance is your name or identification, other than your Student I.D. Number, to appear on this booklet.
- 2. Ensure that in addition to this examination booklet, you have a **Data Booklet** and an **Examination Response Form**. Follow the directions on the front of the Response Form.
- 3. **Disqualification** from the examination will result if you bring books, paper, notes or unauthorized electronic devices into the examination room.
- 4. All multiple-choice answers must be entered on the Response Form using an **HB pencil**. Multiple-choice answers entered in this examination booklet will **not** be marked.
- 5. For each of the written-response questions, write your answer in the space provided in this booklet.
- 6. When instructed to open this booklet, **check the numbering of the pages** to ensure that they are numbered in sequence from page one to the last page, which is identified by

END OF EXAMINATION.

7. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor.

CHEMISTRY 12 PROVINCIAL EXAMINATION

1.	This examin	nation consists of two parts:		Value	Suggested Time
	PART A:	48 multiple-choice questions		48	70
	PART B:	11 written-response questions		32	50
			Total:	80 marks	120 minutes

- 2. Aside from an approved calculator, electronic devices, including dictionaries and pagers, are **not** permitted in the examination room.
- 3. The following tables can be found in the separate **Data Booklet**.
 - Periodic Table of the Elements
 - Atomic Masses of the Elements
 - Names, Formulae, and Charges of Some Common Ions
 - Solubility of Common Compounds in Water
 - Solubility Product Constants at 25°C
 - Relative Strengths of Brönsted-Lowry Acids and Bases
 - Acid-Base Indicators
 - Standard Reduction Potentials of Half-cells

No other reference materials or tables are allowed.

- 4. A calculator is essential for the Chemistry 12 Provincial Examination. The calculator must be a hand-held device designed primarily for mathematical computations involving logarithmic and trigonometric functions and may also include graphing functions. Computers, calculators with a QWERTY keyboard, and electronic writing pads will not be allowed. Students must not bring any external support devices such as manuals, printed or electronic cards, printers, memory expansion chips, or external keyboards. Students may have more than one calculator available during the examination, but calculators may not be shared. Communication between calculators is prohibited and calculators must not have the ability to either transmit or receive electronic signals. In addition to an approved calculator, students will be allowed to use rulers, compasses, and protractors during the examination.
- 5. The time allotted for this examination is **two hours**.

Value: 48 marks Suggested Time: 70 minutes

INSTRUCTIONS:

For each question, select the **best** answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer.

- 1. Which of the following can be used to represent the rate of a reaction?
 - A. $\frac{g}{I}$
 - B. $\frac{g}{\text{mol}}$
 - C. $\frac{g \cdot \min}{\text{mol}}$
 - D. $\frac{\text{mol}}{\text{L} \cdot \text{min}}$
- 2. Consider the following reaction:

$$2H_2O_{2(\ell)} \rightarrow 2H_2O_{(\ell)} + O_{2(g)}$$

Which graph shows the relationship between rate of consumption of H_2O_2 and time?

A.

B.

C.

D.

3. Consider the following reaction:

$$Mg_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + MgCl_{2(aq)}$$

The rate of this reaction increases when more magnesium is added. This change is caused by the

- A. addition of a catalyst.
- B. increase in surface area.
- C. change in nature of the reactants.
- D. increase in concentration of reactants.

4. Consider the following PE diagram:

Progress of the reaction

Which of the following describes the forward reaction?

	$\Delta \mathrm{H} \ \mathrm{(kJ)}$	ACTIVATION ENERGY (kJ)	
A.	+50	250	
B.	-50	200	
C.	-50	150	
D.	+50	150	

5. Which graph shows the relationship between activation energy (E_a) and temperature?

A.

В.

C.

D.

- 6. A catalyst changes the rate of a reaction by
 - A. changing ΔH .
 - B. increasing the temperature.
 - C. decreasing the energy of the products.
 - D. providing an alternate reaction mechanism.
- 7. Consider the following reaction:

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} + energy$$

Which of the following describes the changes in enthalpy and entropy as the reaction proceeds?

	ENTHALPY	ENTROPY
A.	increases	decreases
B.	increases	increases
C.	decreases	decreases
D.	decreases	increases

8. Consider the following equilibrium:

$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} + energy$$

Which of the following will cause this equilibrium to shift to the left?

- A. adding a catalyst
- B. adding some SO₂
- C. increasing the volume
- D. decreasing the temperature
- 9. Methanol, CH₃OH, can be produced by the following:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} + energy$$

The conditions that are necessary to maximize the equilibrium yield of CH₃OH are

- A. low temperature and low pressure.
- B. high temperature and low pressure.
- C. low temperature and high pressure.
- D. high temperature and high pressure.
- 10. A catalyst is added to a system already at equilibrium. How are the forward and reverse reaction rates affected by the addition of the catalyst?

	FORWARD RATE	REVERSE RATE
A.	increases	increases
B.	increases	remains constant
C.	remains constant	decreases
D.	remains constant	remains constant

11. Consider the following reaction:

$$2H_{2(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(l)}$$

What is the equilibrium constant expression for the reaction?

A.
$$K_{eq} = [H_2]^2 [O_2]$$

B.
$$K_{eq} = \frac{[H_2]^2[O_2]}{[H_2O]^2}$$

C.
$$K_{eq} = \frac{[H_2O]^2}{[H_2]^2[O_2]}$$

D.
$$K_{eq} = \frac{1}{[H_2]^2 [O_2]}$$

12. The relationship between K_{eq} and temperature for an exothermic reaction is represented by

A.

В

C.

D.

13. Consider the following equilibrium:

$$2NOBr_{(g)} \rightleftharpoons 2NO_{(g)} + Br_{2(g)}$$
 $K_{eq} = 6.4 \times 10^{-2}$

At equilibrium, a $1.00\,L$ flask contains $0.030\,mol$ NOBr and $0.030\,mol$ NO. How many mol $\,Br_2$ are present?

- A. $1.9 \times 10^{-3} \text{ mol}$
- B. 6.4×10^{-2} mol
- C. 3.0×10^{-2} mol
- D. $4.7 \times 10^{-1} \text{ mol}$

14. The ion concentrations in $2.00\,L$ of $0.32\,M$ K_3PO_4 are

	$\left[\mathrm{K}^{+}\right]$	[PO ₄ ³⁻]
A.	0.16M	0.16M
B.	0.32M	$0.32\mathrm{M}$
C.	0.48M	0.16M
D.	0.96M	0.32 M

15. Which of the following compounds is the least soluble in water?

- A. CaS
- B. $Fe(OH)_3$
- C. KMnO₄
- D. NH₄HC₂O₄

- 16. A solution contains two cations, each having a concentration of 0.20 M.
 When an equal volume of 0.20 M OH⁻ is added, these cations are removed from the solution by precipitation. These ions are
 - A. Ba²⁺ and K⁺
 - B. Sr²⁺ and Na⁺
 - C. Mg^{2+} and Sr^{2+}
 - D. Mg^{2+} and Ca^{2+}
- 17. The solubility of Mn(IO₃)₂ is 4.8×10^{-3} M. What is the value of K_{sp}?
 - A. 1.1×10^{-7}
 - B. 4.4×10^{-7}
 - C. 7.1×10^{-6}
 - D. 1.1×10^{-1}
- 18. The maximum $\left[SO_4^{\ 2^-} \right]$ that can exist in 1.0×10^{-3} M $Ca(NO_3)_2$ without a precipitate forming is
 - A. 7.1×10^{-5} M
 - B. 1.0×10^{-3} M
 - C. 8.4×10^{-3} M
 - D. 7.1×10^{-2} M
- 19. A 1.0×10^{-4} M solution has a pH of 10.00. The solute is a
 - A. weak acid.
 - B. weak base.
 - C. strong acid.
 - D. strong base.

20. Consider the following Brönsted-Lowry equilibrium system:

$$HSO_3^- + H_2PO_4^- \rightleftharpoons SO_3^{2-} + H_3PO_4$$

- What are the two Brönsted-Lowry bases in the equilibrium above?
- A. HSO_3^- and SO_3^{2-}
- B. $H_2PO_4^-$ and SO_3^{2-}
- C. HSO_3^- and H_3PO_4
- D. $H_2PO_4^-$ and H_3PO_4
- 21. The equation representing the predominant reaction of sodium ethanoate, NaCH₃COO, with water is
 - A. $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$
 - B. $CH_3COO^- + H_2O \rightleftharpoons H_3O^+ + CH_2COO^{2-}$
 - C. $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$
 - D. $CH_3COOH + H_2O \rightleftharpoons CH_3COOH_2^+ + OH^-$
- 22. Which of the following solutions will have the lowest electrical conductivity?
 - A. 0.1M HF
 - B. 0.1M NaF
 - C. $0.1M H_2SO_3$
 - D. 0.1M NaHSO₃
- 23. Which of the following is the strongest Brönsted-Lowry base?
 - A. NH₃
 - B. CO₃²⁻
 - C. HSO₃
 - D. $H_2BO_3^-$

24. Consider the following:

	Ion
I.	HCO ₃
II.	$\mathrm{H_2PO_4}^-$
III.	CH ₃ COO ⁻

The amphiprotic ions are

- A. I and II only.
- B. I and III only.
- C. II and III only.
- D. I, II, III.
- 25. The ionization of water at room temperature is represented by
 - A. $H_2O \rightleftharpoons 2H^+ + O^{2-}$
 - B. $2H_2O \rightleftharpoons 2H_2 + O_2$
 - C. $2H_2O \rightleftharpoons H_2 + 2OH^-$
 - D. $2H_2O \rightleftharpoons H_3O^+ + OH^-$
- 26. Addition of HCl to water causes
 - A. both $[H_3O^+]$ and $[OH^-]$ to increase.
 - B. both $\left[H_3 O^+ \right]$ and $\left[OH^- \right]$ to decrease.
 - C. $\left[H_3O^+\right]$ to increase and $\left[OH^-\right]$ to decrease.
 - D. $\left[H_3O^+\right]$ to decrease and $\left[OH^-\right]$ to increase.

27. Which of the following graphs describes the relationship between $[H_3O^+]$ and $[OH^-]$ in aqueous solutions at a constant temperature?

A.

B.

C.

D.

28. Consider the following:

I.	H_2SO_4
II.	${ m HSO_4}^-$
III.	SO ₄ ²⁻

Which of the above is/are present in a reagent bottle labelled $1.0\,\mathrm{M}\ \mathrm{H}_2\mathrm{SO}_4$?

- A. I only
- B. I and II only
- C. II and III only
- D. I, II and III
- 29. The pH of a 0.10 M KOH solution is
 - A. 0.10
 - B. 1.00
 - C. 13.00
 - D. 14.10

30. The equilibrium expression for the predominant reaction between the hydrogen oxalate ion, $HC_2O_4^-$, and water is

A.
$$K_a = \frac{\left[C_2O_4^{2-}\right]\left[H_3O^+\right]}{\left[HC_2O_4^{-1}\right]}$$

B.
$$K_b = \frac{[HC_2O_4^-]}{[C_2O_4^{2-}][OH^-]}$$

C.
$$K_a = \frac{\left[HC_2O_4^{-1}\right]\left[H_3O^{+1}\right]}{\left[C_2O_4^{2-1}\right]}$$

D.
$$K_b = \frac{\left[H_2C_2O_4\right]\left[OH^-\right]}{\left[HC_2O_4^-\right]}$$

- 31. Which of the following salts will dissolve in water to produce a neutral solution?
 - A. LiF
 - B. CrCl₃
 - C. KNO₃
 - D. NH₄Cl
- 32. An indicator changes colour in the pH range 9.0 to 11.0. What is the value of K_a for the indicator?
 - A. 1×10^{-13}
 - B. 1×10^{-10}
 - C. 1×10^{-7}
 - D. 1×10^{1}

- 33. Which of the following always applies at the transition point for the indicator HInd?
 - A. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{OH}^{-}\right]$
 - B. $\left[HInd \right] = \left[Ind^{-} \right]$
 - C. $\left[\operatorname{Ind}^{-}\right] = \left[\operatorname{H}_{3}\operatorname{O}^{+}\right]$
 - D. $\left[\text{HInd} \right] = \left[\text{H}_3 \text{O}^+ \right]$
- 34. Calculate the $\left[H_3O^+\right]$ of a solution prepared by adding 10.0 mL of 2.0 M HCl to 10.0 mL of 1.0 M NaOH.
 - A. 0.020 M
 - B. 0.50 M
 - C. 1.0 M
 - D. 2.0 M
- 35. Consider the following:

I.	H_3O^+
II.	CH ₃ COO ⁻
III.	CH₃COOH

The purpose of a buffer system consisting of $\mathrm{CH_3COOH}$ and $\mathrm{CH_3COONa}$ is to maintain a relatively constant concentration of

- A. I only.
- B. I and II only.
- C. II and III only.
- D. I, II and III.

- 36. Which of the following, when dissolved in water, will produce an acidic solution?
 - A. SrO
 - B. NO_2
 - C. CaO
 - D. Na₂O
- 37. Which of the following is capable of acting both as an oxidizing agent and a reducing agent?
 - $A. H^+$
 - B. Na⁺
 - C. Sn²⁺
 - D. MnO_4^-
- 38. Consider the following redox reaction:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

The substance undergoing reduction is

- A. O_2
- B. CO₂
- C. H₂O
- D. $C_6H_{12}O_6$
- 39. The oxidation number of P in $H_4P_2O_7$ is
 - A. -10
 - В. –5
 - C. +5
 - D. +10

- 40. A solution containing an unknown cation reacts spontaneously with both zinc and copper. The unknown cation is
 - A. 1.0 M H⁺
 - B. 1.0 M Ag⁺
 - C. 1.0 M Sr²⁺
 - D. 1.0 M Mn²⁺
- 41. Which of the following half-reactions is balanced?
 - A. $ClO^- + H_2O + e^- \rightarrow Cl_2 + 2OH^-$
 - B. $2\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 3\text{OH}^-$
 - C. $2\text{ClO}^- + 2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 4\text{OH}^-$
 - D. $2\text{ClO}^- + 2\text{H}_2\text{O} \rightarrow \text{Cl}_2 + 4\text{OH}^- + 2\text{e}^-$
- 42. Which of the following is a spontaneous redox reaction?
 - A. $Ag^+ + I^- \rightarrow AgI$
 - B. $Ag^+ + Fe^{2+} \rightarrow Ag + Fe^{3+}$
 - C. $3Ag^+ + Au \rightarrow 3Ag + Au^{3+}$
 - D. $2Ag^+ + Ni^{2+} \rightarrow 2Ag + Ni$
- 43. Salting of roads during the winter increases the corrosion of cars.

This is because the salt

- A. reacts with the iron.
- B. provides an electrolyte.
- C. acts as a reducing agent.
- D. acts as an oxidizing agent.
- 44. Which of the following will **not** react spontaneously with 1.0 M HC1?
 - A. tin
 - B. lithium
 - C. mercury
 - D. aluminum

45. Consider the following electrochemical cell:

The half-reaction that occurs at the anode is

- A. $Ni \rightarrow Ni^{2+} + 2e^{-}$
- B. $Ni^{2+} + 2e^- \rightarrow Ni$
- C. $Cu \rightarrow Cu^{2+} + 2e^{-}$
- D. $Cu^{2+} + 2e^{-} \rightarrow Cu$

- 46. Which of the following can be produced by electrolysis from a 1.0 M aqueous solution containing its ion?
 - A. nickel
 - B. sodium
 - C. aluminum
 - D. magnesium
- 47. In the electrolysis of molten ZnCl₂ using carbon electrodes, the reaction that occurs at the anode is
 - A. $Zn \rightarrow Zn^{2+} + 2e^{-}$
 - B. $Zn^{2+} + 2e^- \rightarrow Zn$
 - C. $2Cl^- \rightarrow Cl_2 + 2e^-$
 - D. $Cl_2 + 2e^- \rightarrow 2Cl^-$
- 48. In order for an electrolytic cell to operate, it must have
 - A. a voltmeter.
 - B. a salt bridge.
 - C. a power supply.
 - D. an aqueous solution.

This is the end of the multiple-choice section.

Answer the remaining questions directly in this examination booklet.

PART B: WRITTEN RESPONSE

Value: 32 marks Suggested Time: 50 minutes

INSTRUCTIONS:

You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.

Your steps and assumptions leading to a solution must be written in the spaces below the questions.

Answers must include units where appropriate and be given to the correct number of significant figures.

For questions involving calculation, full marks will NOT be given for providing only an answer.

1. Consider the following KE distribution curve for colliding particles:

- a) On the diagram above, sketch a line for the distribution of collisions at a higher temperature. (2 marks)
- b) Shade in the area representing the collisions that could result in forming an activated complex at the lower temperature. (1 mark)

2. Consider the following equilibrium system:

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + energy$$

A 1.00 L container is filled with $5.0\,\mathrm{mol}\ \mathrm{NH_3}$ and the system proceeds to equilibrium as indicated by the graph.

a) Draw and label the graph for N_2 and H_2 .

(2 marks)

b) Calculate the K_{eq} for $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$.

(2 marks)

3.	State Le Chatelier's Principle.	(2 marks)
4.	Write the net ionic equation representing the reaction that occurs when 50.0 mL of 0.20 M ZnSO ₄ and 50.0 mL of 0.20 M BaS are combined.	(2 marks)

6.	e k marks)

- 7. A $1.00\,\mathrm{M}$ OCl⁻ solution has an [OH⁻] of $5.75\times10^{-4}\,\mathrm{M}$.
 - a) Calculate K_b for OCl^- .

(3 marks)

b) Calculate K_a for HOCl.

(1 mark)

8.	Calculate the mass of NaOH needed to prepare 2.0 L of a solution with a pH of 12	2.00. (3 marks)

9. The data below were obtained in a redox titration of a 25.00 mL sample containing $\rm Sn^{2+}$ ions using 0.125 M KMnO₄ according to the following reaction:

$$2MnO_4^- + 16H^+ + 5Sn^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 5Sn^{4+}$$

	Volume of KMnO ₄ used (mL)		
	Trial #1	Trial #2	Trial #3
Initial buret reading	2.00	13.80	24.55
Final buret reading	13.80	24.55	35.32

Calculate the $\left[Sn^{2+} \right]$ in the original sample.

(4 marks)

10. Consider the following electrochemical cell:

a) Calculate the initial cell voltage.

(1 mark)

b) What is the purpose of the salt bridge?

(1 mark)

11.	Consider the electrolysis of 1.0 M H ₂ SO ₄ using inert platinum electrodes.	
	a) Write the oxidation half-reaction.	(1 mark)
	b) Write the reduction half-reaction.	(1 mark)

END OF EXAMINATION

CHEMISTRY 12

June 1999

Course Code = CH

FOR OFFICE USE ONLY

CHEMISTRY 12

June 1999

Course Code = CH

Score for Question 1:

1. _____

Score for Question 7:

7. ____

Score for Question 2:

2. _____

Score for Question 8:

8. _____

Score for Question 3:

3. (2)

Score for Question 9:

9. ____

Score for Question 4:

4. (2)

Score for Question 10:

10. ____

Score for Question 5:

5. _____

Score for Question 11:

11. ____(2)

Score for Question 6:

CONTENTS

PAGE	TABLE
1	Periodic Table of the Elements
2	Atomic Masses of the Elements
3	Names, Formulae, and Charges of Some Common Ions
4	Solubility of Common Compounds in Water
5	Solubility Product Constants at 25°C
6	Relative Strengths of Brönsted-Lowry Acids and Bases
7	Acid-Base Indicators
8	Standard Reduction Potentials of Half-Cells

REFERENCE

1		PERIODIC TABLE OF THE ELEMENTS											18				
Hydrogen																	2 He Helium
	2	ı										13	14	15	16	17	4.0
3	4					14 -	Aton	nic number				5	6	7	8	9	10
Li Lithium	Be Beryllium					Si -	Sym					В	C	N	0	F	Ne
6.9	9.0	Sincon rune no										Neon 20.2					
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium			_	_	_						Aluminum 27.0	Silicon 28.1	Phosphorus 31.0	Sulphur 32.1	Chlorine 35.5	Argon 39.9
23.0	24.3	3	4	5	6	7	8	9	10	11	12			-			
19 K	Ca	21 Sc	22 Ti	23 V	Cr	25 Mn	Fe	27 Co	28 Ni	Cu	30 Z n	Ga 31	Ge 32	33 As	34 Se	35 Br	36 Kr
Potassium	Calcium	Scandium	I I Titanium	V Vanadium	Chromium	Manganese		Cobalt	Nickel	Cu	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.5	Strontium 87.6	Yttrium 88.9	Zirconium 91.2	Niobium 92.9	Molybdenum 95.9	Technetium (98)	Ruthenium 101.1	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	Iodine 126.9	Xenon 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87 Fr	88 D c	89 A o	104 D.C	105	106	107	108	109									
Francium	Ra Radium	Ac Actinium	Rf Rutherfordium	Ha Hahnium	Sg Seaborgium	Uns Unnilseptium	Uno Unniloctium	Une Unnilennium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)									
Based on	Based on mass of C^{12} at 12.00.																
			\ 1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Values in masses of			est\	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
known iso	otopes for	elements	~~\	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium (145)	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0
which do	not occur	naturally.	\	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			\	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			\l	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	232.0 231.0 238.0 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262)																

ATOMIC MASSES OF THE ELEMENTS

Based on mass of C^{12} at 12.00. Values in parentheses are the mass of the most stable or best known isotopes for elements which do not occur naturally.

Element	Symbol Atomic Atomic Element Number Mass		Symbol	Atomic Number	Atomic Mass		
Actinium	Ac	89	(227)	Mercury	Hg	80	200.6
Aluminum	Al	13	27.0	Molybdenum	Mo	42	95.9
Americium	Am	95	(243)	Neodymium	Nd	60	144.2
Antimony	Sb	51	121.8	Neon	Ne	10	20.2
Argon	Ar	18	39.9	Neptunium	Np	93	(237)
Arsenic	As	33	74.9	Nickel	Ni	28	58.7
Astatine	At	85	(210)	Niobium	Nb	41	92.9
Barium	Ba	56	137.3	Nitrogen	N	7	14.0
Berkelium	Bk	97	(247)	Nobelium	No	102	(259)
Beryllium	Be	4	9.0	Osmium	Os	76	190.2
Bismuth	Bi	83	209.0	Oxygen	O	8	16.0
Boron	В	5	10.8	Palladium	Pd	46	106.4
Bromine	Br	35	79.9	Phosphorus	P	15	31.0
Cadmium	Cd	48	112.4	Platinum	Pt	78	195.1
Calcium	Ca	20	40.1	Plutonium	Pu	94	(244)
Californium	Cf	98	(251)	Polonium	Po	84	(209)
Carbon	C	6	12.0	Potassium	K	19	39.1
Cerium	Ce	58	140.1	Praseodymium	Pr	59	140.9
Cesium	Cs	55	132.9	Promethium	Pm	61	(145)
Chlorine	Cl	17	35.5	Protactinium	Pa	91	231.0
Chromium	Cr	24	52.0	Radium	Ra	88	(226)
Cobalt	Co	27	58.9	Radon	Rn	86	(222)
Copper	Cu	29	63.5	Rhenium	Re	75	186.2
Curium	Cm	96	(247)	Rhodium	Rh	45	102.9
Dysprosium	Dy	66	162.5	Rubidium	Rb	37	85.5
Einsteinium	Es	99	(252)	Ruthenium	Ru	44	101.1
Erbium	Er	68	167.3	Rutherfordium	Rf	104	(261)
Europium	Eu	63	152.0	Samarium	Sm	62	150.4
Fermium	Fm	100	(257)	Scandium	Sc	21	45.0
Fluorine	F	9	19.0	Selenium	Se	34	79.0
Francium	Fr	87	(223)	Silicon	Si	14	28.1
Gadolinium	Gd	64	157.3	Silver	Ag	47	107.9
Gadonnum	Ga	31	69.7	Sodium	Na	11	23.0
Germanium	Ge	32	72.6	Strontium	Sr	38	23.0 87.6
Gold	Au	79	197.0	Sulphur	S	16	32.1
Hafnium	Hf	72	178.5	Tantalum	Ta	73	180.9
Hahnium	Ha	105	(262)	Technetium	Tc	43	
Helium	He	2	4.0	Tellurium	Te	52	(98) 127.6
Holmium	Но	67	164.9	Terbium	Tb	65	158.9
Hydrogen	H	1	1.0	Thallium	Tl	81	204.4
Indium	In	49	114.8	Thorium	Th	90	232.0
Iodine	I	53	126.9	Thulium	Tm	69	168.9
Iridium	I Ir	33 77	192.2	Tin	Sn	50	
	ir Fe	26	55.8	Titanium	Sn Ti	22	118.7 47.9
Iron	re Kr	26 36	55.8 83.8		W	22 74	183.8
Krypton Lanthanum	Kr La	50 57	83.8 138.9	Tungsten Uranium	W U	92	238.0
Lantnanum	La Lr	103		Vanadium	V	23	
	Lr Pb		(262) 207.2	Xenon		23 54	50.9
Lead	Pb Li	82		Ytterbium	Xe Yb	54 70	131.3
Lithium		3 71	6.9				173.0
Lutetium	Lu	71	175.0	Yttrium	Y	39	88.9
Magnesium	Mg	12	24.3	Zinc	Zn	30	65.4
Manganese	Mn	25	54.9	Zirconium	Zr	40	91.2
Mendelevium	Md	101	(258)				

NAMES, FORMULAE, AND CHARGES OF SOME COMMON IONS

Positive ions (ca	tions)	Negative ions (anions)		
Aluminum	Al^{3+}	Bromide	Br ⁻	
Ammonium	$NH_4^{}$	Carbonate	CO_3^{2-}	
Barium	Ba^{2+}	Chlorate	ClO ₃	
Calcium	Ca ²⁺	Chloride	Cl ⁻	
Chromium(II), chromous	Cr ²⁺	Chlorite	ClO ₂	
Chromium(III), chromic	Cr ³⁺	Chromate	CrO_2 CrO_4^{2-}	
Copper(I)*, cuprous	Cu^+		•	
Copper(II), cupric	Cu^{2+}	Cyanide	CN ⁻	
Hydrogen	H^+	Dichromate	$\operatorname{Cr_2O_7}^{2-}$	
Hydronium	H_3O^+	Dihydrogen phosphate	$\mathrm{H_2PO_4}^-$	
Iron(II)*, ferrous	Fe^{2+}	Ethanoate, Acetate	CH ₃ COO ⁻	
Iron(III), ferric	Fe ³⁺	Fluoride	F^-	
Lead(II), plumbous	Pb^{2+}	Hydrogen carbonate, bicarbonate	HCO ₃	
Lead(IV), plumbic	Pb ⁴⁺	Hydrogen oxalate, binoxalate	$HC_2O_4^{-}$	
Lithium	$\mathrm{Li}^{\scriptscriptstyle +}$	Hydrogen sulphate, bisulphate	HSO ₄	
Magnesium	Mg^{2+}	Hydrogen sulphide, bisulphide	HS ⁻	
Manganese(II), manganous	Mn ²⁺	Hydrogen sulphite, bisulphite	HSO ₃	
Manganese(IV)	Mn ⁴⁺			
Mercury(I)*, mercurous	${\rm Hg_2}^{2+}$	Hydroxide	OH ⁻	
Mercury(II), mercuric	Hg^{2+}	Hypochlorite	ClO-	
Potassium	\mathbf{K}^{+}	Iodide	Ι-	
Silver	Ag^+	Monohydrogen phosphate	HPO_4^{2-}	
Sodium	Na ⁺	Nitrate	NO_3^-	
Tin(II)*, stannous	Sn ²⁺	Nitrite	NO_2^-	
Tin(IV), stannic	Sn ⁴⁺	Oxalate	$C_2O_4^{2-}$	
Zinc	Zn^{2+}	Oxide**	O^{2-}	
* Aqueous solutions are readily or	kidized by air.	Perchlorate	ClO ₄	
** Not stable in aqueous solutions.		Permanganate	$\mathrm{MnO_4}^-$	
		Phosphate	PO_4^{3-}	
		Sulphate	SO_4^{2-}	
		Sulphide	S^{2-}	
		Sulphite	SO_3^{2-}	
		Thiocyanate	SCN^-	

SOLUBILITY OF COMMON COMPOUNDS IN WATER

The term soluble here means $> 0.1 \ mol/L \ at \ 25^{o}C$.

NEGATIVE IONS (Anions)	POSITIVE IONS (Cations)	SOLUBILITY OF COMPOUNDS	
All	Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺	Soluble	
All	Hydrogen ion, H ⁺	Soluble	
All	Ammonium ion, NH ₄ ⁺	Soluble	
Nitrate, NO ₃ ⁻	All	Soluble	
Chloride, Cl or Bromide, Br	All others	Soluble	
or Iodide, I	Ag ⁺ , Pb ²⁺ , Cu ⁺	Low Solubility	
Sulphate, SO_4^{2-}	All others	Soluble	
Sulphate, 50 ₄	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	Low Solubility	
Sulphide, S ²⁻	Alkali ions, H^+ , NH_4^+ , Be^{2+} Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+}	Soluble	
	All others	Low Solubility	
H 1 11 0H	Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble	
Hydroxide, OH	All others	Low Solubility	
Phosphate, PO ₄ ³⁻ or Carbonate, CO ₃ ²⁻	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble	
or Sulphite, SO_3^{2-}	All others	Low Solubility	

SOLUBILITY PRODUCT CONSTANTS AT 25°C

Name	Formula	\mathbf{K}_{sp}
barium carbonate	BaCO ₃	2.6×10^{-9}
barium chromate	BaCrO ₄	1.2×10^{-10}
barium sulphate	${ m BaSO}_4$	1.1×10^{-10}
calcium carbonate	CaCO ₃	5.0×10^{-9}
calcium oxalate	CaC ₂ O ₄	2.3×10 ⁻⁹
calcium sulphate	CaSO ₄	7.1×10^{-5}
copper(I) iodide	CuI	1.3×10^{-12}
copper(II) iodate	Cu(IO ₃) ₂	6.9×10^{-8}
copper(II) sulphide	CuS	6.0×10^{-37}
iron(II) hydroxide	Fe(OH) ₂	4.9×10^{-17}
iron(II) sulphide	FeS	6.0×10^{-19}
iron(III) hydroxide	Fe(OH) ₃	2.6×10^{-39}
lead(II) bromide	PbBr ₂	6.6×10^{-6}
lead(II) chloride	PbCl ₂	1.2×10^{-5}
lead(II) iodate	Pb(IO ₃) ₂	3.7×10^{-13}
lead(II) iodide	PbI ₂	8.5×10^{-9}
lead(II) sulphate	PbSO ₄	1.8×10^{-8}
magnesium carbonate	MgCO ₃	6.8×10^{-6}
magnesium hydroxide	$Mg(OH)_2$	5.6×10^{-12}
silver bromate	${\rm AgBrO_3}$	5.3×10^{-5}
silver bromide	AgBr	5.4×10^{-13}
silver carbonate	Ag_2CO_3	8.5×10^{-12}
silver chloride	AgCl	1.8×10^{-10}
silver chromate	Ag ₂ CrO ₄	1.1×10^{-12}
silver iodate	AgIO ₃	3.2×10^{-8}
silver iodide	AgI	8.5×10^{-17}
strontium carbonate	SrCO ₃	5.6×10^{-10}
strontium fluoride	SrF ₂	4.3×10^{-9}
strontium sulphate	SrSO ₄	3.4×10^{-7}
zinc sulphide	ZnS	2.0×10^{-25}

RELATIVE STRENGTHS OF BRÖNSTED-LOWRY ACIDS AND BASES

in aqueous solution at room temperature

Strength of Acid	Name of Acid	Acid	Base K _a	Strength of Base
Strong	Perchloric	$HClO_4 \rightarrow$	$H^+ + ClO_4^-$ very large	Weak
1	Hydriodic	•	$H^+ + I^-$ very large	
	Hydrobromic		$H^+ + Br^-$ very large	
	Hydrochloric		$H^+ + Cl^-$ very large	
	Nitric		$H^+ + NO_3^-$ very large	
	Sulphuric	,	$H^+ + HSO_4^-$ very large	
	Hydronium Ion	2 .	$H^+ + H_2O$	
	Iodic	5	$H^+ + IO_3^-$ 1.7×10 ⁻¹	
	Oxalic		$H^+ + HC_2O_4^-$ 5.9×10 ⁻²	
	Sulphurous $(SO_2 + H_2O)$		$H^+ + HSO_3^ 1.5 \times 10^{-2}$	
	Hydrogen sulphate ion		$H^+ + SO_4^{2-}$ 1.2×10^{-2}	
	Phosphoric	•	$H^+ + H_2PO_4^-$ 7.5×10 ⁻³	
	Hexaaquoiron ion, iron(III) ion	$Fe(H_2O)^{3+} \iff$	$H^+ + Fe(H_2O)_5(OH)^{2+}$ 6.0×10 ⁻³	;
	Citric	` '0	$H^+ + H_2C_6H_5O_7^-$ 7.1×10 ⁻⁴	
	Nitrous	5 0 5 7	$H^+ + NO_2^ 4.6 \times 10^{-2}$	
	Hydrofluoric	$_{\mathrm{HF}}\overset{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}$	$H^+ + F^- = 3.5 \times 10^{-4}$,
	Methanoic, formic	нсоон ↔	$H^+ + HCOO^- \dots 1.8 \times 10^{-4}$	
	Hexaaquochromium ion, chromium(III) ion	$Cr(H_2O)_6^{3+} \iff$	$H^+ + Cr(H_2O)_5(OH)^{2+} \dots 1.5 \times 10^{-4}$	
	Benzoic	, , ,	$H^+ + C_6 H_5 COO^-$ 6.5×10 ⁻⁵	
	Hydrogen oxalate ion		$H^+ + C_2O_4^{2-}$ 6.4×10 ⁻⁵	
	Ethanoic, acetic	CH₃COOH ←	$H^+ + CH_3COO^-$ 1.8×10 ⁻⁵	
	Dihydrogen citrate ion	$H_2C_6H_5O_7^- \iff$	$H^+ + HC_6H_5O_7^{2-}$ 1.7×10 ⁻⁵	
	Hexaaquoaluminum ion, aluminum ion	$Al(H_2O)_6^{3+} \iff$	$H^+ + Al(H_2O)_5(OH)^{2+} \dots 1.4 \times 10^{-5}$	
	Carbonic $(CO_2 + H_2O)$		$H^+ + HCO_3^- \dots 4.3 \times 10^{-7}$	
	Monohydrogen citrate ion	$HC_6H_5O_7^{2-} \iff$	$H^+ + C_6 H_5 O_7^{3-} \dots 4.1 \times 10^{-7}$	
	Hydrogen sulphite ion	$HSO_3^- \iff$	$H^+ + SO_3^{2-}$ 1.0×10^{-7}	
	Hydrogen sulphide	$H_2S \iff$	$H^+ + HS^- \dots 9.1 \times 10^{-8}$	
	Dihydrogen phosphate ion	$H_2PO_4^- \iff$	$H^+ + HPO_4^{2-}$ 6.2×10 ⁻⁸	3
	Boric	$H_3BO_3 \iff$	$H^+ + H_2BO_3^-$ 7.3×10 ⁻¹	.0
	Ammonium ion	$NH_4^+ \iff$	$H^+ + NH_3$ 5.6×10 ⁻¹	.0
	Hydrocyanic	$HCN \iff$	$H^+ + CN^- \dots 4.9 \times 10^{-1}$	10
	Phenol	$C_6H_5OH \iff$	$H^+ + C_6 H_5 O^- \dots 1.3 \times 10^{-10}$	0
	Hydrogen carbonate ion	$HCO_3^- \iff$	$H^+ + CO_3^{2-}$ 5.6×10 ⁻¹	.1
	Hydrogen peroxide	$H_2O_2 \iff$	$H^+ + HO_2^-$ 2.4×10 ⁻¹	12
	Monohydrogen phosphate ion	$HPO_4^{2-} \iff$	$H^+ + PO_4^{3-} \dots 2.2 \times 10^{-1}$	13
	Water	$H_2O \iff$	$H^+ + OH^- \dots 1.0 \times 10^{-1}$	4
	Hydroxide ion	OH⁻ ←	$H^+ + O^{2-}$ very small	I
	Ammonia	$NH_3 \leftarrow$	$H^+ + NH_2^-$ very small	ı
Weak				Strong

ACID-BASE INDICATORS

INDICATOR	pH RANGE IN WHICH COLOUR CHANGE OCCURS	COLOUR CHANGE AS pH INCREASES
Methyl violet	0.0 – 1.6	yellow to blue
Thymol blue	1.2 – 2.8	red to yellow
Orange IV	1.4 – 2.8	red to yellow
Methyl orange	3.2 - 4.4	red to yellow
Bromcresol green	3.8 - 5.4	yellow to blue
Methyl red	4.8 – 6.0	red to yellow
Chlorophenol red	5.2 - 6.8	yellow to red
Bromthymol blue	6.0 – 7.6	yellow to blue
Phenol red	6.6 - 8.0	yellow to red
Neutral red	6.8 - 8.0	red to amber
Thymol blue	8.0 – 9.6	yellow to blue
Phenolphthalein	8.2 - 10.0	colourless to pink
Thymolphthalein	9.4 – 10.6	colourless to blue
Alizarin yellow	10.1 – 12.0	yellow to red
Indigo carmine	11.4 – 13.0	blue to yellow

STANDARD REDUCTION POTENTIALS OF HALF-CELLS

Ionic Concentrations are at 1M in Water at 25° C

STRENGTH OF OXIDIZING AGENT	OXIDIZING AGENTS		REDUCING AGENTS	E*(VOLTS)	STRENGTH OF REDUCING AGENT
strong			2F ⁻		weak
↑			2SO ₄ ²⁻		
			2H ₂ O		
			$Mn^{2+} + 4H_2O$		
	$Au^{3+} + 3e^{-}$	\rightleftharpoons	Au _(s)	+1.50	
			$\frac{1}{2}Br_{2(1)} + 3H_2O$		
			$C1^- + 4H_2O$		_
	$Cl_{2(g)} + 2e^{-}$	\rightleftharpoons	2C1 ⁻	+1.36	
	$Cr_2O_7^{2-} + 14H^+ + 6e^-$				gc
			H ₂ O		Overpotential Effect
			$Mn^{2+} + 2H_2O$		i le
			$\frac{1}{2} I_{2(s)} + 3H_2O \dots$		inti
	= (-)		2Br ⁻		ote
			$Au_{(s)} + 4C1^{-}$: dr
	$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO_{(g)} + 2H_2O$	+0.96	
	$Hg^{2+} + 2e^{-}$	\rightleftharpoons	Hg _(l)	+0.85	
	$\frac{1}{2}$ O _{2(g)} + 2H ⁺ (10 ⁻⁷ M)+ 2e ⁻	\rightleftharpoons	H ₂ O	+0.82	"i
			N ₂ O ₄ + 2H ₂ O		
			Ag _(s)		
			Hg ₍₁₎		
	$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	+0.77	
			H ₂ O ₂		
			$MnO_{2(s)} + 4OH^{-}$		
			2I ⁻		
			Cu _(s)		
			$S_{(s)} + 3H_2O$		
			Cu _(s)		
	$SO_4^{2-} + 4H^+ + 2e^-$	\rightarrow	$H_2SO_3 + H_2O$	+0.17	
			Cu ⁺		
			Sn ²⁺		
			H ₂ S _(g)		
			H _{2(g)}		
	$Pb^{2+} + 2e^{-}$	→	Pb _(s)	0.13	
	$Sn^{2+} + 2e^{-}$	\rightarrow	Sn _(s)	=0.14	
	$Ni^{2+} + 2e^{-}$	\rightarrow	Ni _(s)	-0.26	
	$H_{2}PO_{4} + 2H^{+} + 2e^{-}$	$\stackrel{\longleftarrow}{\leftarrow}$	$H_3PO_3 + H_2O$	-0.28	
	$Co^{2+} + 2e^{-}$		Co ₍₈₎		
		`	H ₂ Se		
	2.1		Cr ²⁺		
	2H ₂ O+ 2e ⁻	•	$H_2 + 2OH^-(10^{-7}M)$		
	\Box $Fe^{2+} + 2e^{-}$		Fe _(s)		
	$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$		$2Ag_{(s)} + S^{2-}$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\operatorname{Cr}_{(s)}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\operatorname{Zn}_{(s)}$		
	$Te_{(s)} + 2H^{+} + 2e^{-}$	-	H ₂ Te		
	O 2H_O_ 2e-		$H_{2(g)} + 2OH^{-}$		
			Mn _(s)		
			Al _(s)		
	$M_{\alpha}^{2+} + 2e^{-}$	$\stackrel{\leftarrow}{\rightarrow}$	$Mg_{(s)}$	-2 37	
	$N_2^+ \perp a^-$	$\leftarrow \rightarrow$	Na _(s)	-2 71	
	C_2^{2+} C_2^{2-}	$\leftarrow \rightarrow$	Ca _(s)	-2 87	
	Sr2+ 20-	$\stackrel{\leftarrow}{\leftarrow}$	$Sr_{(s)}$	-2.80	
	R 2 ²⁺ + 22-	\leftarrow	Ba _(s)	-2 Q1	
	V+	\leftarrow	K _(s)	-2 93	
	D b +	\leftarrow	Rb _(s)	-2.08	
	KD + e	✓	Cs _(s)	-2 02	\downarrow
weak			Cs _(s)		strong
Weak	LI + e		L1(8)	3.04	