Chemistry 12 June 1998 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	С	U	1	A5	25.	А	K	4	L2
2.	D	U	1	B6	26.	D	U	4	L11
3.	С	U	1	B9	27.	А	Н	4	L6
4.	А	Κ	1	A5	28.	А	U	4	L12
5.	А	Κ	2	D4	29.	С	U	4	M1
6.	В	U	2	D7	30.	D	Η	4	N4
7.	А	U	2	E2	31.	С	Κ	4	O2
8.	В	U	2	E2	32.	С	U	4	O4
9.	В	U	2	F2	33.	D	U	4	P6
10.	D	Κ	2	F3	34.	В	U	4	P4
11.	В	U	2	F5	35.	С	U	4	Q5
12.	В	U	2	F7	36.	D	Κ	5	R1
13.	С	Κ	3	G1	37.	В	U	5	S1, S2
14.	В	U	3	G8	38.	С	U	5	S 1
15.	А	U	3	H1	39.	D	U	5	S2
16.	В	U	3	G2	40.	А	U	5	S 5
17.	D	U	3	I1	41.	С	U	5	S 6
18.	D	U	3	I4	42.	D	U	5	T6
19.	А	U	3	I5	43.	D	U	5	U11
20.	В	Κ	4	J2	44.	D	U	5	U2
21.	А	Κ	4	J4	45.	А	U	5	U2, 5
22.	В	Κ	4	J12	46.	С	U	5	U3
23.	С	U	4	K6	47.	С	U	5	W4
24.	D	Н	4	K8	48.	А	Κ	5	W2

Multiple Choice = 48 marks

Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	K	2	1	B1
2.	2	U	2	1	C5
3.	3	Н	4	2	E2, F5
4.	4	U	3	3	I7
5.	5	Н	3	3	I6
6.	6	K	2	4	K10, 11
7.	7	U	4	4	M3, 4
8.	8	U	4	4	P1, 6
9.	9	U	3	5	T2
10.	10	K	2	5	W1
11.	11	U	3	5	U2, U11

Written Response = 32 marks

Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions) EXAMINATION TOTAL = 80 marks

LEGEND:K = Keyed ResponseC = Cognitive LevelQ = Question NumberK = Keyed ResponseC = Cognitive LevelB = Score Box NumberS = ScoreCO = Curriculum OrganizerPLO = Prescribed Learning OutcomeOutcome

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. A reaction does not always occur when two reactant particles collide. Give two reasons why.

(2 marks)

Solution

A reaction does not occur if there is insufficient energy.	$\leftarrow 1 \text{ mark}$
A reaction does not occur if there is incorrect geometry.	$\leftarrow 1 \text{ mark}$

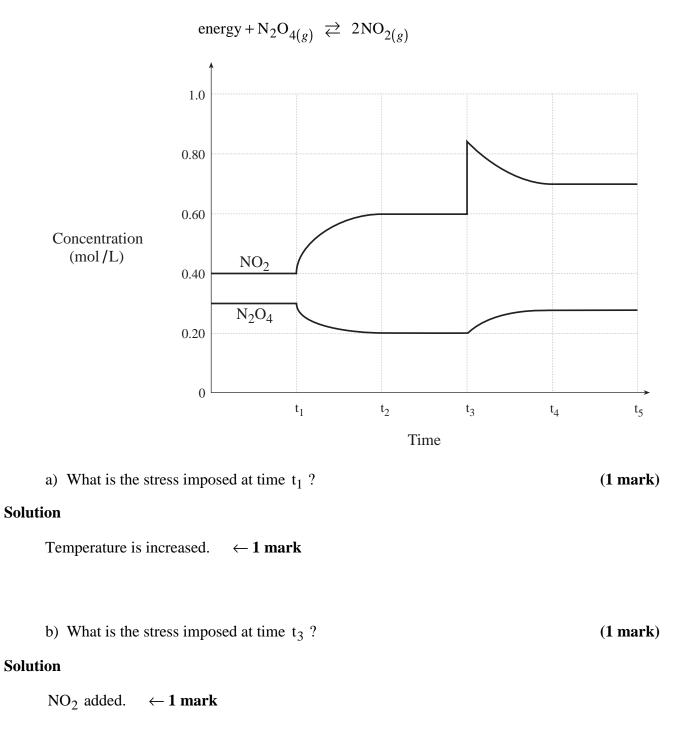
- 2. Consider the following reaction mechanism:
 - $\begin{array}{lll} \mbox{Step 1:} & \mbox{NO} + \mbox{NO} \rightarrow \mbox{N}_2\mbox{O}_2 \\ \mbox{Step 2:} & \mbox{N}_2\mbox{O}_2 + \mbox{H}_2 \rightarrow \mbox{N}_2\mbox{O} + \mbox{H}_2\mbox{O} \\ \mbox{Step 3:} & \mbox{N}_2\mbox{O} + \mbox{H}_2 \rightarrow \mbox{N}_2 + \mbox{H}_2\mbox{O} \end{array}$

a) Write the equation for the overall reaction.

Solution

 $2NO + 2H_2 \rightarrow N_2 + 2H_2O ~~ \leftarrow \textbf{1}~\textbf{mark}$

b) Identify the reaction intermediate(s).


Solution

 $N_2O_2 \text{ and } N_2O \ \leftarrow \frac{1}{2} \text{ mark for each}$

(1 mark)

(1 mark)

3. Consider the following graph for the reaction:

c) Calculate K_{eq} for the equilibrium between t_2 and t_3 . (2 marks)

Solution

$$K_{eq} = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(0.60)^2}{(0.20)} = 1.8 \quad \leftarrow 2 \text{ marks}$$

986chk

4. Consider the following net ionic equation:

$$\operatorname{Ag}^{+}_{(aq)} + \operatorname{SCN}^{-}_{(aq)} \to \operatorname{AgSCN}_{(s)}$$

A 20.00 mL sample of 0.200 M NH_4SCN is used to titrate a 30.00 mL sample containing Ag^+ . Calculate the $[Ag^+]$ in the original sample. (3 marks)

Solution

mol SCN⁻ = 0.0200 L
$$\left(\frac{0.200 \text{ mol}}{1 \text{ L}}\right)$$
 = 4.00×10⁻³ mol
mol Ag⁺ = mol SCN⁻
= 4.00×10⁻³ mol
[Ag⁺] = $\frac{4.00 \times 10^{-3} \text{ mol}}{0.0300 \text{ L}}$ = 0.133 M
 $\left\{ \leftarrow 1 \text{ mark} \right\}$

NOTE: $(\frac{1}{2} \text{ mark})$ is deducted for incorrect significant figures.

 A solution contains 0.020 M Ba²⁺ and an unknown concentration of Sr²⁺. When dilute Na₂CO₃ is slowly added to the mixture, both Ba²⁺ and Sr²⁺ start to precipitate at the same time. (3 marks)

a) Calculate the
$$\left[CO_3^{2-}\right]$$
 when BaCO₃ starts to precipitate.

Solution

$$BaCO_{3} \rightleftharpoons Ba^{2+} + CO_{3}^{2-}$$

$$0.020 \qquad x$$

$$K_{sp} = \left[Ba^{2+}\right] \left[CO_{3}^{2-}\right]$$

$$\left[CO_{3}^{2-}\right] = \frac{2.6 \times 10^{-9}}{0.020}$$

$$= 1.3 \times 10^{-7} M$$

b) Calculate the initial $[Sr^{2+}]$.

Solution

$$\operatorname{SrCO}_3 \rightleftharpoons \operatorname{Sr}^{2+} + \operatorname{CO}_3^{2-}$$

 $y \quad 1.3 \times 10^{-7}$

$$K_{sp} = \left[Sr^{2+} \right] \left[CO_3^{2-} \right]$$
$$\left[Sr^{2+} \right] = \frac{5.6 \times 10^{-10}}{1.3 \times 10^{-7}}$$
$$= 4.3 \times 10^{-3} M$$

6. a) Define the term *amphiprotic*.

Solution

For example:

The ability to act as both a proton donor or proton acceptor. $\leftarrow 1 \text{ mark}$

b) Give an example of an amphiprotic anion.

(1 mark)

Solution

For example:

$\text{HCO}_3^- \leftarrow 1 \text{ mark}$

7. The salt Na₂CO₃ undergoes hydrolysis to produce a basic solution. Calculate the [OH⁻] in 0.100 M Na₂CO₃.
 (4 marks)

Solution

NOTE: $(\frac{1}{2} \text{ mark})$ is deducted for incorrect significant figures.

8. A student titrated a 25.00 mL sample of a 0.20 M HX (unknown) acid with 0.20 M NaOH. The following data were collected.

Volume of base added (mL)	рН
0.00	2.72
10.00	4.57
24.90	7.14
24.99	8.14
25.00	8.88
25.01	9.60
26.00	11.59
35.00	12.52

a) Describe the acid HX as strong or weak. Support your answer with two observations from the data table. (3 marks)

Solution

For example:

The unknown is a weak acid.	
The initial pH of 2.72 indicates that a weak acid is being titrated.	
The equivalence or stoichiometric point has a pH of 8.88 which	} ← 3 marks
indicates that a basic salt is produced during this reaction.	
NaOH is a strong base and therefore the acid must be weak.	

b) Select an appropriate indicator for this titration and identify the colour at the equivalence point. (1 mark)

Solution

For example:

Thymol blue would be a green colour.]
or	$\leftarrow 1$ mark
Phenolphthalein would be a faint pink colour.	

9. Balance the following redox reaction:

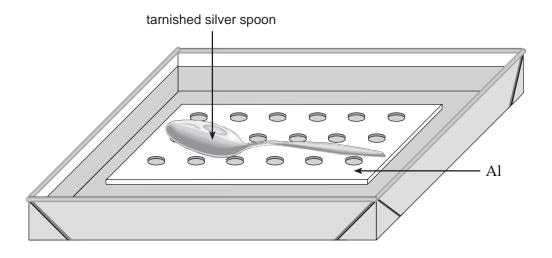
(3 marks)

$$Ni + ClO_4^- \rightarrow Ni^{2+} + Cl^-$$
 (acid)

Solution

For example:

$$1 \text{ mark} \xrightarrow{\text{for } e^- \text{ balance}} 4 \times (\text{Ni} \rightarrow \text{Ni}^{2+} + 2e^-) \qquad \leftarrow \frac{1}{2} \text{ mark}$$


$$\underbrace{1 \times \left(8e^- + 8H^+ + \text{ClO}_4^- \rightarrow \text{Cl}^- + 4H_2\text{O}\right)}_{4 \text{Ni} + 8H^+ + \text{ClO}_4^- \rightarrow 4 \text{Ni}^{2+} + \text{Cl}^- + 4H_2\text{O}} \leftarrow 1 \text{ mark}$$

Solution	
For example:	
The process of applying an electric current to cause a chemical reaction to occur.	$\Big\} \leftarrow 2 \text{ marks}$

10. Define the term *electrolysis*.

(2 marks)

11. Consider the following diagram:

On a silver spoon, the black tarnish, Ag_2S , can be removed spontaneously by placing the spoon in contact with aluminum in a conducting solution.

a) Write the equations for the two half-reactions.

Solution

For example:

 $Ag_2S + 2e^- \rightarrow 2Ag + S^{2-} \leftarrow 1 \text{ mark}$

 $Al \rightarrow Al^{3+} + 3e^{-} \leftarrow 1 \text{ mark}$

b) Write the equation for the redox reaction.

(1 mark)

(2 marks)

Solution

$$3Ag_2S + 2Al \rightarrow 6Ag + 2Al^{3+} + 3S^{2-} \} \leftarrow 1 \text{ mark}$$

END OF KEY