Chemistry 12 April 1998 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	CO	PLO	Q	K	С	СО	PLO
1.	D	Κ	1	A2	25.	В	Н	4	L4, 6
2.	С	U	1	B9	26.	В	U	4	L7
3.	С	Κ	1	B9	27.	В	Κ	4	L9
4.	D	U	1	C3	28.	С	U	4	L11
5.	С	Κ	2	D4	29.	А	U	4	M2
6.	С	U	2	D7	30.	С	U	4	N4
7.	D	U	2	D9	31.	D	U	4	O2
8.	В	U	2	E2	32.	В	U	4	O4
9.	В	Κ	2	F2	33.	А	U	4	P2
10.	А	U	2	F3	34.	С	U	4	P5
11.	В	U	2	E2	35.	А	U	4	Q2
12.	С	U	2	F6	36.	А	Κ	4	R1
13.	А	Κ	3	G6	37.	В	U	5	S2
14.	D	U	3	G2, H5	38.	D	U	5	S 1
15.	А	U	3	H2	39.	D	U	5	S 1
16.	А	U	3	H4	40.	С	U	5	S2
17.	В	Η	3	H5	41.	А	Η	5	S4, 5
18.	С	U	3	I4	42.	А	U	5	U10
19.	D	U	3	I4	43.	А	Η	5	T4
20.	D	Η	3	H3, J3	44.	В	U	5	T5
21.	С	Κ	4	J6	45.	А	Κ	5	U11
22.	D	Κ	4	K3	46.	А	U	5	U5
23.	В	U	4	K2, 6	47.	D	U	5	U9
24.	D	U	4	K8	48.	В	U	5	W2, 4

Multiple Choice = 48 marks

Part B: Written Response

Q	В	С	S	СО	PLO
1.	1	U	4	1	B6, C4
2.	2	Κ	2	2	E2
3.	3	U	2	2	F7
4.	4	Н	5	3	I3, 7, T2
5.	5	Κ	3	4	K4
6.	6	U	4	4	M1, 3
7.	7	U	4	4	M4, N1, 2
8.	8	U	3	5	T1, 3
9.	9	U	2	5	V4
10.	10	Н	3	5	W2, O3, W4

Written Response = 32 marks

Multiple Choice = 48 (48 questions) Written Response = 32 (10 questions) EXAMINATION TOTAL = 80 marks

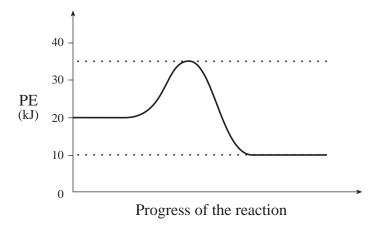
LEGEND:

Q = Question Number

B = Score Box Number

 $\mathbf{K} = \mathbf{K}\mathbf{e}\mathbf{y}\mathbf{e}\mathbf{d}$ Response

 $\mathbf{S} = \mathbf{Score}$


C = Cognitive Level CO = Curriculum Organizer

PLO = Prescribed Learning Outcome

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. Consider the following potential energy diagram for a reversible reaction:

a) Calculate the activation energy for the forward reaction.

Solution:

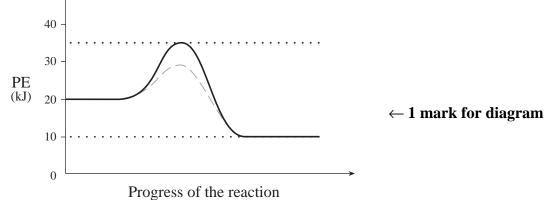
15 kJ.

b) Calculate ΔH for the forward reaction. (1 mark)

Solution:

-10 kJ.

c) Calculate the activation energy for the reverse reaction. (1 mark)


Solution:

25 kJ.

(1 mark)

d) On the diagram above, sketch a curve that could result when a catalyst is added. (1 mark)

2. State Le Chatelier's Principle.

Solution:

For example:

When a system at equilibrium $(\frac{1}{2} \text{ mark})$ is subjected to a stress, $(\frac{1}{2} \text{ mark})$ the system shifts so as to offset the stress $(\frac{1}{2} \text{ mark})$ and establish a new equilibrium $(\frac{1}{2} \text{ mark})$.

3. Consider the following equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} \qquad K_{eq} = 7.1 \times 10^2$$

At equilibrium, the $[H_2] = 0.012 \text{ mol/L}$ and [HI] = 0.40 mol/L. What is the equilibrium concentration of I_2 ? (2 marks)

Solution:

$$K_{eq} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$\therefore [I_{2}] = \frac{[HI]^{2}}{[H_{2}]K_{eq}}$$

$$= \frac{(0.40)^{2}}{(0.012)(7.1 \times 10^{2})}$$

$$= 0.019 \text{ mol/L}$$

$$\leftarrow 2 \text{ marks}$$

NOTE: $(\frac{1}{2} \text{ mark})$ is deducted for incorrect significant figures.

4. Consider the following reaction:

$$\operatorname{Cu}_{(s)} + 2\operatorname{AgCH}_3\operatorname{COO}_{(aq)} \to \operatorname{Cu}(\operatorname{CH}_3\operatorname{COO})_{2(aq)} + 2\operatorname{Ag}_{(s)}$$

A piece of Cu wire is placed into 1.00 L of a saturated solution of silver acetate, AgCH₃COO. When all the Ag⁺ has reacted, 2.00 g of Cu has been used.

a) Write the net ionic equation for the reaction between Cu and Ag^+ . (1 mark)

Solution:

$$\operatorname{Cu}_{(s)} + 2\operatorname{Ag}^{+}_{(aq)} \rightarrow \operatorname{Cu}^{2+}_{(aq)} + 2\operatorname{Ag}_{(s)} \leftarrow 1 \operatorname{mark}$$

b) Calculate the
$$K_{sp}$$
 of AgCH₃COO.

(4 marks)

Solution:

$$\begin{array}{l} \operatorname{AgCH_{3}COO}_{(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{CH_{3}COO}^{-}_{(aq)} \\ & \operatorname{mol} \text{ of } \operatorname{Cu} \text{ reacted} = 2.00 \ \operatorname{g} \left(\frac{1 \ \operatorname{mol}}{63.5 \ \operatorname{g}} \right) = 3.15 \times 10^{-2} \ \operatorname{mol} \\ & \operatorname{mol} \text{ of } \operatorname{Ag}^{+} \text{ reacted} = 3.15 \times 10^{-2} \ \operatorname{mol} \operatorname{Cu} \left(\frac{2 \ \operatorname{mol} \operatorname{Ag}^{+}}{1 \ \operatorname{mol} \operatorname{Cu}} \right) \\ & = 6.30 \times 10^{-2} \ \operatorname{mol} \operatorname{Ag}^{+} \end{array} \right\} \leftarrow 1 \ \frac{1}{2} \ \operatorname{marks} \\ & \left[\operatorname{Ag}^{+} \right] = \left[\operatorname{CH}_{3} \operatorname{COO}^{-} \right] = 6.30 \times 10^{-2} \ \operatorname{M} \\ & \operatorname{K}_{sp} = \left[\operatorname{Ag}^{+} \right] \left[\operatorname{CH}_{3} \operatorname{COO}^{-} \right] \\ & = \left(6.30 \times 10^{-2} \right)^{2} \\ & = 3.97 \times 10^{-3} \end{array} \right\} \leftarrow 1 \ \frac{1}{2} \ \operatorname{marks}$$

5. a) Define the term weak Brönsted-Lowry base.	(2 marks)
Solution: For example:	
A weak Brönsted-Lowry base is a proton acceptor that reacts with water less than 100%.	← 2 marks
b) Give an example of a compound that acts as a weak base.Solution:For example:	(1 mark)
An example of a compound that acts as a weak base is NH_3 .	\leftarrow 1 mark

Lactic acid, C₂H₅OCOOH, is a weak acid produced by the body. At 25°C,
 0.0100 M C₂H₅OCOOH has a pH of 2.95. Calculate the value of K_a for lactic acid.

(4 marks)

Solution:

- 7. The salt NaCN dissolves in water and forms a slightly basic solution.
 - a) Write the dissociation equation for NaCN in water.

Solution:

$$\operatorname{NaCN}_{(s)} \to \operatorname{Na}_{(aq)}^{+} + \operatorname{CN}_{(aq)}^{-} \leftarrow 1 \operatorname{mark}^{-}$$

b) Write the net ionic equation for the hydrolysis reaction.

(1 mark)

(1 mark)

Solution:

$$\text{CN}_{(aq)}^{-} + \text{H}_2\text{O}_{(\ell)} \rightleftharpoons \text{HCN}_{(aq)} + \text{OH}_{(aq)}^{-} \leftarrow 1 \text{ mark}$$

c) Write the K_b expression and calculate its value.

(2 marks)

Solution:

$$K_{b} = \frac{\left[\text{HCN} \right] \left[\text{OH}^{-} \right]}{\left[\text{CN}^{-} \right]}$$

$$K_{b} = \frac{K_{w}}{K_{a}}$$

$$= \frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}}$$

$$= 2.0 \times 10^{-5}$$

NOTE: $(\frac{1}{2} \text{ mark})$ is deducted for incorrect significant figures.

8. A redox reaction that occurs in an alkaline dry cell is:

 $Zn + 2MnO_2 \rightarrow Mn_2O_3 + ZnO$ (basic)

Write the balanced equation for the reduction half-reaction occurring in basic solution.

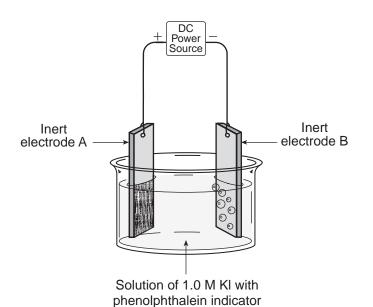
(3 marks)

Solution:

$2 \operatorname{MnO}_2 + 2 \operatorname{H}^+ + 2 \operatorname{e}^- \to \operatorname{Mn}_2 \operatorname{O}_3 + \operatorname{H}_2 \operatorname{O}$	\leftarrow 2 marks in acid
$2\mathrm{MnO}_2 + \mathrm{H}_2\mathrm{O} + 2\mathrm{e}^- \rightarrow \mathrm{Mn}_2\mathrm{O}_3 + 2\mathrm{OH}^-$	\leftarrow 1 mark for changing to basic

9. a) Identify a metal that can be used to cathodically protect the iron hull of a ship. (1 mark)
Solution:
For example:

Mg ← 1 mark
or
Zn


b) Explain how the metal you chose prevents the iron from rusting. (1 mark)

Solution:

For example:

Attaching a more active metal causes the iron to become a cathode by supplying it with electrons. $\leftarrow 1 \text{ mark}$

10. Consider the following cell used for the electrolysis of 1.0 M KI solution containing a few drops of phenolphthalein indicator.

a) Write the equation for the half-reaction taking place at electrode **A**. (1 mark)

Solution:

 $2I^- \rightarrow I_2 + 2e^- \leftarrow 1 \text{ mark}$

- b) As the cell operates, gas bubbles form and the solution turns pink around electrode **B**.
 - i) Identify the gas that forms.

Solution:

- Hydrogen gas. $\leftarrow 1 \text{ mark}$
 - ii) Explain why the solution turns pink.

Solution:

The pink colour is due to the production of the hydroxide ion. $\leftarrow 1 \text{ mark}$

END OF KEY

(2 marks)