Chemistry 12 January 1998 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	CO	PLO	Q	K	С	CO	PLO
1.	А	U	1	A4	25.	С	Н	4	L3, 4
2.	С	U	1	A2	26.	А	U	4	L7
3.	D	U	1	C5	27.	А	Κ	4	L10
4.	В	Η	1	B9	28.	А	U	4	L12
5.	D	Κ	2	D5	29.	С	U	4	M4
6.	D	U	2	F3	30.	В	U	4	N3
7.	В	Н	2	E2	31.	D	U	4	O3
8.	D	Κ	2	E4	32.	А	U	4	O5
9.	С	Κ	2	F2	33.	С	U	4	P3
10.	В	Κ	2	F4	34.	В	U	4	P5
11.	D	U	2	F6	35.	D	U	4	Q3
12.	А	U	2	F8	36.	В	Κ	4	R3
13.	А	U	3	G6	37.	В	U	5	S2
14.	С	Κ	3	G4	38.	А	U	5	S2
15.	А	U	3	H2	39.	С	U	5	S1, 2
16.	А	U	3	G8	40.	В	U	5	S 2
17.	С	U	3	H6	41.	В	Η	5	S 4
18.	А	U	3	I3	42.	А	U	5	S 6
19.	А	Н	3	I6	43.	А	U	5	T3
20.	D	Κ	4	J2	44.	В	U	5	U2
21.	С	U	4	J7	45.	D	U	5	U3
22.	С	U	4	J11	46.	С	U	5	U7
23.	В	Κ	4	K7	47.	С	Κ	5	V1
24.	А	Н	4	K9, L12	48.	D	U	5	W4

Multiple Choice = 48 marks

Part B: Written Response

Q	В	С	S	СО	PLO
1.	1	Н	4	1	C2, 5
2.	2	U	4	2	E2, F4, B6
3.	3	U	4	3	G5, I3
4.	4	U	2	3	H3
5.	5	Κ	2	4	K3, J6
6.	6	U	4	4	M1, 3
7.	7	U	4	4	N2, P4, 6
8.	8	U	3	5	T2
9.	9	U	2	5	U9
10.	10	U	3	5	W3, 4, 8

Written Response = 32 marks

Multiple Choice = 48 (48 questions) Written Response = 32 (10 questions) EXAMINATION TOTAL = 80 marks

LEGEND:

Q = Question Number

B = Score Box Number

 \mathbf{K} = Keyed Response \mathbf{S} = Score C = Cognitive Level CO = Curriculum Organizer

PLO = Prescribed Learning Outcome

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. Consider the following overall reaction:

$$2NO + 2H_2 \rightarrow 2H_2O + N_2$$

a) Explain why the reaction is likely to involve more than one step. (1 mark)

Solution:

A 4 particle collision is unlikely. $\leftarrow 1 \text{ mark}$

b) A proposed mechanism for the reaction is:

Step 1: $NO + H_2 \rightarrow N + H_2O$ Step 2: ? Step 3: $N_2O + H_2 \rightarrow N_2 + H_2O$

i) Write the equation for Step 2.

Solution:

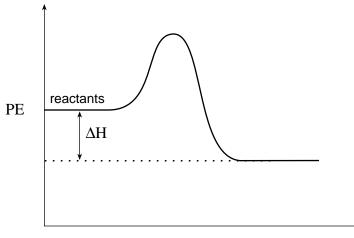
 $NO + N \rightarrow N_2O \quad \leftarrow 2 \text{ marks}$

ii) Identify all reaction intermediates.

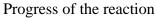
Solution:

N and N₂O $\leftarrow \frac{1}{2}$ mark for each

(2 marks)


(1 mark)

2. Consider the following equilibrium:


$$CS_{2(g)} + 3Cl_{2(g)} \rightleftharpoons CCl_{4(g)} + S_2Cl_{2(g)} \qquad \Delta H = -238 \text{ kJ}$$

a) Sketch a potential energy diagram for the reaction above and label ΔH . (2 marks)

Solution:

1 mark for general shape 1 mark for ΔH

b) Some CS_2 is added and equilibrium is then reestablished. State the direction of the equilibrium shift and the resulting change in $[Cl_2]$. (1 mark)

Solution:

For example:

The equilibrium shifts to the right $(\frac{1}{2} \text{ mark})$ and $[Cl_2]$ decreases $(\frac{1}{2} \text{ mark})$.

c) The temperature is decreased and equilibrium is then reestablished. What will the effect be on the value of K_{eq} ? (1 mark)

Solution:

 K_{eq} will increase. $\leftarrow 1 \text{ mark}$

3. A 100.00 mL sample of a saturated solution of $Ca(OH)_2$ is evaporated to dryness. The mass of the solid residue is 0.125 g. Calculate the solubility product of $Ca(OH)_2$.

(4 marks)

Solution:

$$\begin{aligned} \text{Moles of } \operatorname{Ca}(\mathrm{OH})_2 &= 0.125 \text{ g}\left(\frac{1 \text{ mol}}{74.1 \text{ g}}\right) = 1.687 \times 10^{-3} \text{ mol} \\ \text{Solubility} &= \frac{1.687 \times 10^{-3} \text{ mol}}{0.10000 \text{ L}} \\ &= 1.687 \times 10^{-2} \text{ mol/L} \end{aligned} \right\} \leftarrow 2 \text{ marks} \\ &= 1.687 \times 10^{-2} \text{ mol/L} \\ \\ &\operatorname{Ca}(\mathrm{OH})_2 \rightleftharpoons \operatorname{Ca}^{2+} + 2\mathrm{OH}^{-} \\ &\operatorname{K}_{sp} &= \left[\operatorname{Ca}^{2+}\right] \left[\operatorname{OH}^{-}\right]^2 \\ &= \left(1.687 \times 10^{-2}\right) \left(3.374 \times 10^{-2}\right)^2 \\ &= 1.92 \times 10^{-5} \end{aligned} \right\} \leftarrow 2 \text{ marks}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

4. Write the net ionic equation representing the reaction that occurs when equal volumes of $0.20 \text{ M H}_2\text{SO}_4$ and $0.20 \text{ M Ba}(\text{NO}_3)_2$ are mixed together. (2 marks)

Solution:

 $\operatorname{Ba}^{2+}_{(aq)} + \operatorname{SO}_{4}^{2-}_{(aq)} \to \operatorname{BaSO}_{4(s)} \quad \leftarrow 2 \text{ marks}$

5. Define the term *strong Brönsted-Lowry acid*.

(2 marks)

Solution:

A strong Brönsted-Lowry acid is a species that donates a proton (**1 mark**) 100% to a receptive base (**1 mark**).

6. Nicotinic acid, $HC_6H_4NO_2$, is a weak acid found in vitamin B. Calculate the pH of 0.010 M $HC_6H_4NO_2$ ($K_a = 1.4 \times 10^{-5}$).

(4 marks)

Solution:

$$HC_{6}H_{4}NO_{2} + H_{2}O \rightleftharpoons H_{3}O^{+} + C_{6}H_{4}NO_{2}^{-}$$

$$\begin{bmatrix} I \\ 0.010 & 0 & 0 \\ -x & +x & +x \\ \hline E \end{bmatrix} = 0.010 - x & x & x \\ \approx 0.010 \\ K_{a} = \frac{\left[H_{3}O^{+}\right]\left[C_{6}H_{4}NO_{2}^{-}\right]}{\left[HC_{6}H_{4}NO_{2}\right]} \\ 1.4 \times 10^{-5} = \frac{(x)(x)}{(0.010)} \\ x = \left[H_{3}O^{+}\right] = 3.74 \times 10^{-4} M$$

$$\left. \right\} \leftarrow 1\frac{1}{2} \text{ marks}$$

$$pH = -\log(3.74 \times 10^{-4}) = 3.43 \quad \leftarrow 1 \text{ mark}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

a) Write the formula equation for the neutralization of HF. (1 mark)

Solution:

 $NaOH + HF \rightarrow NaF + H_2O \leftarrow 1 mark$

b) Write the net ionic equation for the neutralization of HBr.

Solution:

 $H^+ + OH^- \rightarrow H_2O \qquad \leftarrow 1 \text{ mark}$

c) One of the neutralization reactions above produces a salt that undergoes hydrolysis.Identify the salt and write the net ionic equation for the hydrolysis reaction. (2 marks)

 $\leftarrow \frac{1}{2}$ mark

Solution: *For example:*

NaF

 $F^- + H_2O \rightleftharpoons HF + OH^- \leftarrow 1\frac{1}{2}$ marks

(1 mark)

8. Balance the following redox reaction:

(3 marks)

Solution:

For example:

$$1 \text{ mark} \xrightarrow{\text{for } e^- \text{ balance}} 3 \times (\text{HSO}_4^- + 3\text{H}^+ + 2e^- \rightarrow \text{SO}_2 + 2\text{H}_2\text{O}) \xrightarrow{\text{c}} \frac{1}{2} \text{ mark} \leftarrow \frac{1}{2} \text{ mark} \leftarrow \frac{1}{2} \text{ mark}$$

 $Sb + HSO_4^- \rightarrow Sb_2O_3 + SO_2$

$$2Sb + 3HSO_4^- + 3H^+ \rightarrow Sb_2O_3 + 3SO_2 + 3H_2O \leftarrow 1$$
 mark

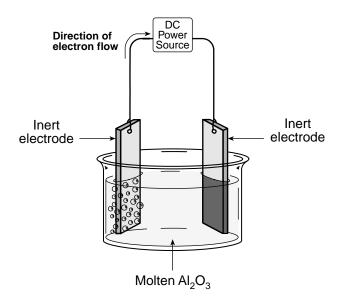
(acid)

9. Consider the following redox reaction:

$$\mathrm{H_2Se} + \mathrm{SO_4}^{2-} + 2\mathrm{H^+} \rightarrow \mathrm{Se} + \mathrm{H_2SO_3} + \mathrm{H_2O}$$

Calculate the E° for the reaction above.

Solution:


$$H_2Se \rightarrow Se + 2H^+ + 2e^- \qquad E^\circ = +0.40 \text{ V} \qquad \leftarrow 1 \text{ mark}$$

$$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O \qquad E^\circ = +0.17 \text{ V} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$E^\circ = +0.57 \text{ V} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

(2 marks)

10. Consider the following electrolytic cell used for the electrolysis of molten aluminum oxide.

a) Write the equation for the half-reaction taking place at the anode. (1 mark)

Solution:

 $2O^{2-} \rightarrow O_2 + 4e^- \leftarrow 1 \text{ mark}$

b) Write the equation for the half-reaction taking place at the cathode. (1 mark)

Solution:

 $Al^{3+} + 3e^- \rightarrow Al \qquad \leftarrow 1 \text{ mark}$

c) Clearly indicate on the diagram above, the direction of electron flow. (1 mark)

Solution:

Electrons flow from left to right through the wire. $\leftarrow 1$ mark See diagram above.

END OF KEY