JANUARY 1998 # PROVINCIAL EXAMINATION ### MINISTRY OF EDUCATION, SKILLS AND TRAINING # CHEMISTRY 12 #### GENERAL INSTRUCTIONS - 1. Insert the stickers with your Student I.D. Number (PEN) in the allotted spaces above and on the back cover of this booklet. Under no circumstance is your name or identification, other than your Student I.D. Number, to appear on this booklet. - 2. Ensure that in addition to this examination booklet, you have a **Data Booklet** and an **Examination Response Form.** Follow the directions on the front of the Response Form. - 3. **Disqualification** from the examination will result if you bring books, paper, notes or unauthorized electronic devices into the examination room. - 4. All multiple-choice answers must be entered on the Response Form using an **HB pencil**. Multiple-choice answers entered in this examination booklet will **not** be marked. - 5. For each of the written-response questions, write your answer in the space provided in this booklet. - 6. When instructed to open this booklet, **check the numbering of the pages** to ensure that they are numbered in sequence from page one to the last page, which is identified by ### **END OF EXAMINATION**. 7. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor. #### **CHEMISTRY 12 PROVINCIAL EXAMINATION** | 1 | TTI : | | | Value | Suggested
Time | |----|------------|--------------------------------------|--------|----------|-------------------| | 1. | This exami | nation consists of two parts: | | | | | | PART A: | 48 multiple-choice questions | | 48 | 70 | | | PART B: | 10 written-response questions | | 32 | 50 | | | | | Total: | 80 marks | 120 minutes | - 2. Aside from an approved calculator, electronic devices, including dictionaries and pagers, are **not** permitted in the examination room. - 3. The following tables can be found in the separate **Data Booklet**. - Periodic Table of the Elements - Atomic Masses of the Elements - Names, Formulae, and Charges of Some Common Ions - Solubility of Common Compounds in Water - Solubility Product Constants at 25°C - Relative Strengths of Brönsted-Lowry Acids and Bases - Acid-Base Indicators - Standard Reduction Potentials of Half-cells No other reference materials or tables are allowed. - 4. A calculator is essential for the Chemistry 12 Provincial Examination. The calculator must be a hand-held device designed primarily for mathematical computations involving logarithmic and trigonometric functions. Computers, calculators with a QWERTY keyboard, and electronic writing pads will not be allowed. Students must not bring any external devices to support calculators such as manuals, printed or electronic cards, printers, memory expansion chips or cards, or external keyboards. Students may have more than one calculator available during the examination. Calculators may not be shared, and communication between calculators is prohibited during the examination. In addition to an approved calculator, students will be allowed to use rulers, compasses, and protractors during the examination. - 5. The time allotted for this examination is **two hours**. ### PART A: MULTIPLE CHOICE Value: 48 marks Suggested Time: 70 minutes **INSTRUCTIONS:** For each question, select the **best** answer and record your choice on the Response Form provided. Using an HB pencil, completely fill in the circle that has the letter corresponding to your answer. 1. Which of the following properties could be used to measure the rate of the following reaction taking place in an open container? $$\operatorname{Zn}_{(s)} + 2\operatorname{HCl}_{(aq)} \to \operatorname{ZnCl}_{2(aq)} + \operatorname{H}_{2(g)}$$ - A. mass of Zn - B. solubility of HCl - C. concentration of Cl - D. colour of the solution 2. Consider the following reaction: $$N_2 + 3H_2 \rightarrow 2NH_3$$ The rate of formation of NH₃ is 3.0 mL/min. The rate of consumption of H₂ is - A. 1.5 mL/min - B. 2.0 mL/min - C. 4.5 mL/min - D. 9.0 mL/min 3. Consider the following reaction mechanism: Step 1: $$NO_2 + NO_2 \rightarrow N_2O_4$$ Step 2: $$N_2O_4 + CO \rightarrow CO_2 + NO + NO_2$$ In the overall reaction, N_2O_4 is a - A. product. - B. catalyst. - C. reactant. - D. reaction intermediate. 4. Consider the rate diagram below for the following reaction: $$2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$$ Which of the following occurs at time t_1 ? - A. addition of H₂ - B. addition of HI - C. addition of a catalyst - D. a decrease in volume - 5. Chemical equilibrium is said to be dynamic because - A. the reaction proceeds quickly. - B. the mass of the reactants is decreasing. - C. the macroscopic properties are constant. - D. both forward and reverse reactions are occurring. - 6. Which equation has the largest value of K_{eq} ? A. $$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$ $\Delta H = 21 \text{ kJ}$ B. $$C_2H_{6(g)} \rightleftharpoons 2C_{(g)} + 3H_{2(g)}$$ $\Delta H = 83 \text{ kJ}$ C. $$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightleftharpoons H_2 O_{(g)} \qquad \Delta H = -240 \text{ kJ}$$ C. $$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightleftharpoons H_2 O_{(g)} \Delta H = -240 \text{ kJ}$$ D. $Ca_{(s)} + 2H_2 O_{(\ell)} \rightleftharpoons Ca(OH)_{2(aq)} + H_{2(g)} \Delta H = -240 \text{ kJ}$ 7. Given the following system: $$2\text{CrO}_{4}^{2-}_{(aq)} + 2\text{H}^{+}_{(aq)} \rightleftharpoons \text{Cr}_{2}\text{O}_{7}^{2-}_{(aq)} + \text{H}_{2}\text{O}_{(\ell)}$$ Which of the following chemicals, when added to the above system at equilibrium, would result in a decrease in $\left[\text{CrO}_4^{2-}\right]$? - A. NaOH - B. HNO₃ - C. Na₂CrO₄ - D. Na₂Cr₂O₇ - 8. Addition of a catalyst to an equilibrium system - A. increases the value of K_{eq} . - B. increases the yield of products. - C. has no effect on the rates of reaction. - D. increases the rate of formation of both reactants and products. - 9. Consider the following reaction: $$2B_{(s)} + 3F_{2(g)} \rightleftharpoons 2BF_{3(g)}$$ The equilibrium expression is A. $$K_{eq} = \frac{[2BF_3]}{[3F_2]}$$ B. $$K_{eq} = \frac{\left[F_2\right]^3}{\left[BF_3\right]^2}$$ C. $$K_{eq} = \frac{\left[BF_3\right]^2}{\left[F_2\right]^3}$$ D. $$K_{eq} = \frac{[BF_3]^2}{[B]^2 [F_2]^3}$$ - 10. The value of K_{eq} can be changed by - A. adding a catalyst. - B. changing the temperature. - C. changing the reactant concentration. - D. changing the volume of the container. - 11. Consider the following equilibrium: $$PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$ When 0.40 mol of PCl_3 and 0.40 mol of Cl_2 are placed in a 1.00 L container and allowed to reach equilibrium, 0.244 mol of PCl_5 are present. From this information, the value of K_{eq} is - A. 0.10 - B. 0.30 - C. 3.3 - D. 10 - 12. Consider the following equilibrium: $$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$ $K_{eq} = 2.30$ A 1.0 L container is filled with 0.05 mol PCl_5 , 1.0 mol PCl_3 , and 1.0 mol Cl_2 . The system proceeds to the - A. left because Trial $K_{eq} > K_{eq}$ - B. left because Trial $K_{eq} < K_{eq}$ - C. right because Trial $K_{eq} > K_{eq}$ - D. right because Trial $K_{eq} < K_{eq}$ - 13. When solid AgBr is added to a saturated solution of AgBr, the reaction rates can be described as: | | RATE OF DISSOLVING | RATE OF CRYSTALLIZATION | |----|--------------------|-------------------------| | A. | increases | increases | | B. | increases | decreases | | C. | decreases | increases | | D. | increases | no change | - 14. Which of the following units can be used to represent solubility? - A. g - B. mol - C. mol/L - D. mL/s - 15. When equal volumes of 0.2 M K₂CO₃ and 0.2 M Na₃PO₄ are mixed, - A. no precipitate will form. - B. a precipitate of K_3PO_4 will form. - C. a precipitate of Na₂CO₃ will form. - D. a precipitate of both K₃PO₄ and Na₂CO₃ will form. - 16. A 3.0 L solution of NiCl₂ is found to have a chloride concentration of 0.60 M. The concentration of nickel(II) ions in this solution is - A. 0.30 M - B. 0.60 M - C. 0.90 M - D. 1.2 M - 17. Which of the following causes a precipitate to form when $\operatorname{Sr}^{2+}_{(aq)}$ is added but not when $\operatorname{Zn}^{2+}_{(aq)}$ is added? - A. S^{2-} - B. Cl - C. SO₄²⁻ - D. CO₃²⁻ - 18. The solubility of PbS is 2.9×10^{-14} M. What is the value of K_{sp} for PbS? - A. 8.4×10^{-28} - B. 2.9×10^{-14} - C. 5.8×10^{-14} - D. 1.7×10^{-7} # 19. Consider the following equation: $$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$ Which of the following graphs represents the relationship between $\left[Ag^+\right]$ and $\left[Cl^-\right]$ in this system at a constant temperature? A. B. C. D. # 20. The acid found in vinegar will - A. taste bitter. - B. feel slippery. - C. change litmus to blue. - D. react with Mg to produce H_2 - 21. In which of the following equilibrium systems is HCO_3^- acting as a Brönsted-Lowry base? - A. $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$ - $\text{B.} \quad \text{HCO}_3^- + \text{HS}^- \ \rightleftarrows \ \text{H}_2\text{S} + \text{CO}_3^{\ 2^-}$ - C. $HCO_3^- + H_2S \rightleftharpoons H_2CO_3 + HS^-$ - D. $HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-}$ - 22. The conjugate acid of H_2O is - A. O^{2-} - B. OH- - C. H_3O^+ - D. H_2O_2 - 23. The strongest acid that can exist in an aqueous solution is - A. NH_2^- - B. H_3O^+ - C. HNO₂ - D. HClO₄ - 24. Which of the following is possible for an acid? | | ACID STRENGTH | CONCENTRATION | pН | |----|---------------|---------------|------| | A. | strong | 0.01 M | 2.0 | | B. | weak | 0.01 M | 1.0 | | C. | strong | 3 M | 5.5 | | D. | weak | 3 M | -0.5 | 25. Consider the following equilibrium: $$2H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$ A small amount of HCl is added to water and equilibrium is reestablished. When comparing the new equilibrium with the original equilibrium, - A.
$[H_3O^+]$ and pH both decreased. - B. $[H_3O^+]$ and pH both increased. - C. $[H_3O^+]$ increased and pH decreased. - D. $[H_3O^+]$ decreased and pH increased. - 26. The $\left[H_3O^+\right]$ in 100.0 mL of 0.015 M KOH is - A. 6.7×10^{-13} - B. 6.7×10^{-12} - C. 1.5×10^{-3} - D. 1.5×10^{-2} - 27. At any temperature, pK_w is defined as - A. $pK_w = pH + pOH$ - B. $pK_w = pH pOH$ - C. $pK_w = pH \times pOH$ - D. $pK_w = \frac{pH}{pOH}$ - 28. The $\left[OH^{-}\right]$ of a solution with pH 5.75 is - A. $5.6 \times 10^{-9} \text{ M}$ - B. 1.8×10^{-6} M - C. $7.6 \times 10^{-1} \text{ M}$ - D. $9.2 \times 10^{-1} \text{ M}$ - 29. The value of K_b for HPO_4^{2-} is - A. 2.2×10^{-13} - B. 6.2×10^{-8} - C. 1.6×10^{-7} - D. 4.5×10^{-2} - 30. Which of the following 0.10 M solutions is basic? - A. LiCl - B. K_3PO_4 - C. NaClO₄ - D. NH₄NO₃ - 31. Consider the following equilibrium for the indicator HInd at its transition point: $$HInd + H_2O \rightleftharpoons Ind^- + H_3O^+$$ When a small amount of base is added, the equilibrium shifts to the - A. left and the [HInd] > [Ind $^-$] - B. left and the [HInd] < [Ind $^-$] - C. right and the $[HInd] > [Ind^-]$ - D. right and the $[HInd] < [Ind^-]$ - 32. The approximate K_a value for the indicator thymolphthalein is - A. 1×10^{-10} - B. 1×10^{-4} - C. 4 - D. 10 - 33. What volume of 0.100 M NaOH is needed to completely neutralize 25.0 mL of 0.100 M $_{2}SO_{4}$? - A. 12.5 mL - B. 25.0 mL - C. 50.0 mL - D. 75.0 mL - 34. When 0.10 mol of NaOH is added to 1.00 L of 0.30 M HCl, the pH of the resulting solution is - A. 0.52 - B. 0.70 - C. 1.00 - D. 13.30 - 35. Which of the following could be used to form a buffer solution? - A. HBr and NaOH - B. HCl and NH₄Cl - C. HNO₃ and NaNO₃ - D. H₂CO₃ and NaHCO₃ - 36. Normal rain has a pH of approximately 6 as a result of dissolved - A. oxygen. - B. carbon dioxide. - C. sulphur dioxide. - D. nitrogen dioxide. - 37. Which of the following represents a redox reaction? - A. $H_2CO_3 \rightarrow H_2O + CO_2$ - $\text{B.}\quad \text{CuS} + \text{H}_2 \rightarrow \text{H}_2 \text{S} + \text{Cu}$ - C. $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ - D. $2HCl + Na_2SO_3 \rightarrow 2NaCl + H_2O + SO_2$ - 38. The oxidation number of carbon in $C_2O_4^{\ 2-}$ is - A. +3 - B. +4 - C. +5 - D. +6 - 39. Consider the following redox reaction: $$3As_2O_3 + 4NO_3^- + 7H_2O + 4H^+ \rightarrow 6H_3AsO_4 + 4NO$$ The oxidizing agent is - A. H⁺ - B. H₂O - C. NO₃ - D. As_2O_3 - 40. When W_2O_5 is converted to WO_2 in a redox reaction, the W has been - A. reduced since its oxidation number has increased. - B. reduced since its oxidation number has decreased. - C. oxidized since its oxidation number has increased. - D. oxidized since its oxidation number has decreased. 41. A student investigating redox reactions recorded the following results: $$V^{2+} + Te^{2-} \rightarrow \text{no reaction}$$ $$U^{4+} + Te^{2-} \rightarrow U^{3+} + Te$$ Based on these results, the strengths of the oxidizing agents, arranged from strongest to weakest, are - A. V^{2+} , Te, U^{4+} - B. U^{4+} , Te, V^{2+} - C. U^{3+} , Te^{2-} , V^{2+} - D. V^{2+} , Te^{2-} , U^{3+} - 42. A spontaneous redox reaction occurs when Sn²⁺ is mixed with - A. I_2 - B. Cu - C. H₂S - D. Ag₂S - 43. Consider the redox reaction below: $$2 \text{BrO}_3^- + 10 \text{Cl}^- + 12 \text{H}^+ \rightarrow \text{Br}_2 + 5 \text{Cl}_2 + 6 \text{H}_2 \text{O}$$ The oxidation half-reaction involved in this reaction is - A. $2Cl^- \rightarrow Cl_2 + 2e^-$ - B. $2H^+ \rightarrow H_2 + 2e^-$ - C. $BrO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}Br_2 + 3H_2O$ - D. $BrO_3^- + 6H^+ \rightarrow \frac{1}{2}Br_2 + 3H_2O + 5e^-$ ### Use the following diagram to answer questions 44, 45 and 46. - 44. As the cell operates, the electrons flow from the nickel electrode to the palladium electrode. The reaction occurring at the anode is - A. $Pd \rightarrow Pd^{2+} + 2e^{-}$ - B. $Ni \rightarrow Ni^{2+} + 2e^{-}$ - C. $Pd^{2+} + 2e^- \rightarrow Pd$ - D. $Ni^{2+} + 2e^- \rightarrow Ni$ - 45. As the cell operates, - A. both the K^+ and the NO_3^- migrate into the nickel half-cell. - B. both the K^+ and the NO_3^- migrate into the palladium half-cell. - C. the K^+ migrates into the nickel half-cell and the NO_3^- migrates into the palladium half-cell. - D. the K^+ migrates into the palladium half-cell and the NO_3^- migrates into the nickel half-cell. - 46. The initial cell voltage is 1.21 V. The reduction potential of Pd^{2+} is - A. -1.21 V - B. -0.95 V - C. +0.95 V - D. +1.21 V 47. Consider the following chemicals: | I | water | |-----|--------------| | II | oxygen gas | | III | nitrogen gas | At 25°C, a piece of iron rusts in the presence of - A. I only. - B. III only. - C. I and II only. - D. II and III only. - 48. During the electrolysis of 1.0 M Na₂SO₄, the reaction at the cathode is - A. $Na^+ + e^- \rightarrow Na$ - B. $2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2e^-$ - C. $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ - D. $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ ### PART B: WRITTEN RESPONSE INSTRUCTIONS: You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner. Your steps and assumptions leading to a solution must be written in the spaces below the questions. Answers must include units where appropriate and be given to the correct number of significant figures. For questions involving calculation, full marks will NOT be given for providing only an answer. 1. Consider the following overall reaction: Value: 32 marks $$2NO + 2H_2 \rightarrow 2H_2O + N_2$$ a) Explain why the reaction is likely to involve more than one step. (1 mark) **Suggested Time: 50 minutes** b) A proposed mechanism for the reaction is: Step 1: $$NO + H_2 \rightarrow N + H_2O$$ Step 3: $$N_2O + H_2 \rightarrow N_2 + H_2O$$ i) Write the equation for Step 2. (2 marks) ii) Identify all reaction intermediates. (1 mark) 2. Consider the following equilibrium: $$CS_{2(g)} + 3Cl_{2(g)} \implies CCl_{4(g)} + S_2Cl_{2(g)}$$ $\Delta H = -238 \text{ kJ}$ a) Sketch a potential energy diagram for the reaction above and label ΔH . (2 marks) b) Some CS_2 is added and equilibrium is then reestablished. State the direction of the equilibrium shift and the resulting change in $[Cl_2]$. (1 mark) c) The temperature is decreased and equilibrium is then reestablished. What will the effect be on the value of K_{eq} ? (1 mark) | 3. | A 100.00 mL sample of a saturated solution of Ca(OH) ₂ is evaporated to dryness. | |----|--| | | The mass of the solid residue is 0.125 g. Calculate the solubility product of $Ca(OH)_2$. | | | (4 marks) | | 4. | Write the net ionic equation representing the reaction that occurs when equ | al volumes | |----|---|------------| | | of $0.20 \text{ M H}_2\text{SO}_4$ and $0.20 \text{ M Ba}(\text{NO}_3)_2$ are mixed together. | (2 marks) | 5. | Define the term strong Brönsted-Lowry acid. | (2 marks) | 6. Nicotinic acid, $HC_6H_4NO_2$, is a weak acid found in vitamin B. Calculate the pH of 0.010 M $HC_6H_4NO_2$ ($K_a = 1.4 \times 10^{-5}$). (4 marks) - 7. A solution of NaOH is used to neutralize separate solutions of HF and HBr. - a) Write the formula equation for the neutralization of HF. (1 mark) b) Write the net ionic equation for the neutralization of HBr. (1 mark) c) One of the neutralization reactions above produces a salt that undergoes hydrolysis. Identify the salt and write the net ionic equation for the hydrolysis reaction. (2 marks) 8. Balance the following redox reaction: (3 marks) $$\mathrm{Sb} + \mathrm{HSO_4}^- \to \mathrm{Sb_2O_3} + \mathrm{SO_2} \hspace{0.5cm} (\mathrm{acid})$$ 9. Consider the following redox reaction: $$H_2Se + SO_4^{2-} + 2H^+ \rightarrow Se + H_2SO_3 + H_2O$$ Calculate the E° for the reaction above. (2 marks) 10. Consider the following electrolytic cell used for the electrolysis of molten aluminum oxide. (1 mark) a) Write the equation for the half-reaction taking place at the anode. b) Write the equation for the half-reaction taking place at the cathode. (1 mark) c) Clearly indicate on the diagram above, the direction of electron flow. (1 mark) **END OF EXAMINATION** |
 | |------| | | | | | | | | | | |
 | | | | | |
 | | | | | | | | | | | | | | | | | |
 | | | | | | l | | | # **CHEMISTRY 12** January 1998 Course Code = CH # FOR OFFICE USE ONLY # **CHEMISTRY 12** January 1998 Course Code = CH | Score fo | r | | |----------|----|--| | Question | 1: | | 1. _____ Score for Question 8: 8. ____ Score for Question 2: 2. ____(4) Score for Question 9: 9. ____ Score for Question 3: 3. ____ Score for Question 10: 10. ____ Score for Question 4: 4. ____ Score for Question 5: 5. (2) Score for Question 6: 6. _____ Score for Question 7: 7. ____ # **CONTENTS** | PAGE | TABLE | |------|--| | 1 | Periodic Table of the Elements | | 2 | Atomic Masses of the Elements | | 3 | Names, Formulae, and Charges of Some Common Ions | | 4 | Solubility of Common Compounds in Water | | 5 | Solubility Product Constants at 25°C | | 6 | Relative Strengths of Brönsted-Lowry Acids and Bases | | 7 | Acid-Base Indicators | | 8 | Standard Reduction Potentials of Half-Cells | ### REFERENCE | 2
He | 4.0 | 10 | Ne | Neon
20.2 | 18 | Ar | Argon
39.9 | 36 | Kr | rypton | 83.8 | 54 | Xe | Kenon
[31.3 | 98 | Rn | Radon
(222) | | | | | | | | |----------|-----|------------------|----------------------
--|---|--|--|--|--|---|--|--|---|--
--|--|---|-------|--|--
--|--|--|--| | F | | 6 | | | | | | | | | | | | | 85 | | | - | | | | | | | | | 16 | ~ | | | | | | - | | | | 52 | | | 28 | | | - | | | | | | | | | 15 | | | | | | | | As | | | 51 | Sb | Antimony T | 83 | Bi | | - | | | | | | | | | 14 | | | | 14 | Si | | | | | | | | | 82 | Pb | Lead 1 | _ | | | | | | | | | 13 | 5 | В | Boron
10.8 | 13 | Al | Aluminum
27.0 | 3 5 | Ga | | | 46 | ln | Indium
114.8 | 81 | I | Thallium
204.4 | | | | | | | | | | Į | | | | | | | | Zn | Zinc | 65.4 | 48 | Cd | Cadmium
112.4 | 80 | Hg | Mercury
200.6 | | | | | | | | | | | | | | | | = | 29 | Cn | Copper | 63.5 | 47 | Ag | Silver
107.9 | 62 | Au | Gold
197.0 | - | | | | | | | | | | | | | | | | | | 5 | 0 8 | ïZ | Nickel | 58.7 | 46 | Pd | Palladium
106.4 | 78 | Pt | Platinum
195.1 | | | | | | | | ic number | loo | ic mass | | | c | 9 | သိ | Cobalt | 58.9 | 45 | | | 11 | lr | Iridium
192.2 | 109 | Une | Unnilennium (266) | | | | | | | | Atom | Symb | Name | _ | | 0 | 8 26 | Fe | | | 44 | Ru | Ruthenium 101.1 | 92 | Os | Osmium
190.2 | 108 | Uno | Unniloctium (265) | | | | | | | | 14 | Si | Silicon –
28.1 – | | | ľ | 25 | Mn | Manganese | 54.9 | 43 | | Technetium (98) | 75 | Re | Rhenium
186.2 | | _ | Unnilseptium (262) | | | | | | | | | | | | | V | 0 2 | Cr | 0 | | 42 | Mo | Molybdenum
95.9 | 74 | ≽ | Tungsten
183.8 | 106 | Sg | Seaborgium (263) | | | | | | | | | | | | | u | c 8 | > | Vanadium | 50.9 | 41 | SP | Niobium
92.9 | 73 | Та | Tantalum
180.9 | 105 | Ha | Hahniun
(262) | | | | | | | | | | | | | _ | 4 5 | Ti | Titanium | 47.9 | 40 | Zr | Zirconium
91.2 | | Ht | Hafnium
178.5 | 104 | Rf | Rutherfordium
(261) | | | | | | | | | | | | | | | Sc | Scandium | 45.0 | 39 | \times | Yttrium
88.9 | 57 | Гa | Lanthanum
138.9 | 68 | Ac | Actinium (227) | | | | | | | 2 | 4 | Be | Beryllium
9.0 | 12 | Ψ | Magnesium | 24.3 | Ca | Calcium | 40.1 | 38 | Sr | Strontium
87.6 | | Ba | Barium
137.3 | 88 | Ra | Radium
(226) | | | | | | Hydrogen | | 3 | コ | Lithium
6.9 | = | Na | Sodium | 19 | K | Potassium | 39.1 | 37 | Rb | Rubidium 85.5 | 55 | CS | Cesium
132.9 | 87 | 占 | Francium (223) | | | | | | | | 13 14 15 16 17 F | 2 13 14 15 16 17 2 4 | 2 4 Be Si ——Symbol Br 13 14 15 16 17 8 9 F | 2 4 Be Paryllium Silicon —— Atomic mass 10.8 12.0 14.0 16.0 19.0 19.0 13 | 2 4 4 Be Beyllium Silicon Sili | 2 4 4 Beryllium Silicon Silicon Silicon Atomic mass 12 13 14 15 16 17 17 18 14 15 16 17 17 18 14 15 16 17 18 19 19 19 10 11 11 11 11 11 11 11 11 11 11 11 11 | 2 4 Be Si — Atomic number Silicon — Name 2 Be Silicon — Atomic mass 12 14 15 16 17 17 18 18 14 15 16 17 17 17 18 19 17 18 19 17 18 19 17 18 19 17 18 19 19 19 19 19 19 19 19 19 | 2 4 4 Becyllium 9.0 12 Magnesium 24.3 4 Beryllium 9.0 12 Magnesium 24.3 4 Beryllium 9.0 12 Magnesium 24.3 5 14 15 16 17 17 17 18 19 18 11 11 11 11 11 11 11 11 11 11 11 11 | 2 4 Beryllium 9.0 12 Magnesium 24.3 Si | 2 4 Be-cyllium Beryllium Beryllium Beryllium Beryllium Beryllium Beryllium Beryllium Beryllium Beryllium Silicon S | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2 Be Pollium Semidium Timnium Vanadium Chromium Manganese Localic Mark Sends | 2 4 Berylliam 9.0 1.2 Magnesium 8.24.3 2.4.1 2.4.2 2.4.2 2.4.3 | 2 Be Berylliam Scandium Transium Namedium Rucherium Ruc | 24 Be Be Beylium Subject Marginesium Scradium Trianium Vurnium Vurnium Pechnicum Reportant Vurnium Scradium Vurnium Pechnicum Reportant Vurnium Scradium Vurnium Reportant Vurnium Streaminm Vurnium Reportant Vurnium Streaminm Vurnium Reportant Re | 13 14 15 16 17 15 16 17 16 17 17 18 18 18 18 18 19 18 18 18 18 19 19 19 19 19 19 19 | 2 A | 24 Beylium 9.0 Bey | 2 Recylikalism Percylikalism Silvon — Anomic number Only 1922 1922 1921 1922 1921 1970 200.6 204.4 2072 209.0 209. | The parameter paramete | | | | Based on mass of C¹² at 12.00. Values in parentheses are the masses of the most stable or best known isotopes for elements which do not occur naturally. | | | Lutetium
175.0 | 103 | Ľ | Lawrencium
(262) | |----|----|--------------------------------------|-----|---------------------|-----------------------| | 70 | Yb | Ytterbium
173.0 | 102 | N_0 | Nobelium (259) | | | | Thulium
168.9 | 101 | Md | Mendelevium
(258) | | | | Erbium
167.3 | 100 | Fm | Fermium (257) | | | | Holmium
164.9 | 66 | Es | Einsteinium (252) | | 99 | Dy | Dysprosium
162.5 | 86 | Cţ | Californium (251) | | 65 | Tb | Terbium
158.9 | 26 | Bk | Berkelium (247) | | 64 | Сd | Gadolinium
157.3 | 96 | Cm | Curium
(247) | | 63 | Eu | Europium
152.0 | 95 | Am | Americium (243) | | 62 | Sm | Samarium
150.4 | 94 | Pu | Plutonium (244) | | 19 | Pm | Promethium (145) | 93 | Νp | Neptunium (237) | | 09 | pN | Neodymium
144.2 | 92 | | Uranium
238.0 | | 59 | Pr | Praseodymium Neodymiu
140.9 144.2 | | Pa | Protactinium
231.0 | | 58 | Ce | Cerium
140.1 | 06 | Th | Thorium 232.0 | ### ATOMIC MASSES OF THE ELEMENTS Based on mass of C^{12} at 12.00. Values in parentheses are the mass of the most stable or best known isotopes for elements which do not occur naturally. | Element | Symbol | Atomic
Number | | Element | Symbol | Atomic
Number | Atomic
Mass | |--------------------------|----------|------------------|---------------|---------------|----------|------------------|----------------| | Actinium | Ac | 89 | (227) | Mercury | Hg | 80 | 200.6 | | Aluminum | Al | 13 | 27.0 | Molybdenum | Mo | 42 | 95.9 | | Americium | Am | 95 | (243) | Neodymium | Nd | 60 | 144.2 | | Antimony | Sb | 51 | 121.8 | Neon | Ne |
10 | 20.2 | | Argon | Ar | 18 | 39.9 | Neptunium | Np | 93 | (237) | | Arsenic | As | 33 | 74.9 | Nickel | Ni | 28 | 58.7 | | Astatine | At | 85 | (210) | Niobium | Nb | 41 | 92.9 | | Barium | Ba | 56 | 137.3 | Nitrogen | N | 7 | 14.0 | | Berkelium | Bk | 97 | (247) | Nobelium | No | 102 | (259) | | Beryllium | Be | 4 | 9.0 | Osmium | Os | 76 | 190.2 | | Bismuth | Bi | 83 | 209.0 | Oxygen | 0 | 8 | 16.0 | | Boron | В | 5 | 10.8 | Palladium | Pd | 46 | 106.4 | | Bromine | Br | 35 | 79.9 | | Pu
P | 15 | 31.0 | | | | | 112.4 | Phosphorus | Pt | 78 | 195.1 | | Calaium | Cd
Co | 48 | | Platinum | | 78
94 | | | Calcium | Ca
Cf | 20 | 40.1 | Plutonium | Pu
Po | | (244) | | Californium | Cf | 98 | (251) | Polonium | Po | 84 | (209) | | Carbon | C | 6 | 12.0 | Potassium | K | 19 | 39.1 | | Cerium | Ce | 58 | 140.1 | Praseodymium | Pr | 59 | 140.9 | | Cesium | Cs | 55 | 132.9 | Promethium | Pm | 61 | (145) | | Chlorine | Cl | 17 | 35.5 | Protactinium | Pa | 91 | 231.0 | | Chromium | Cr | 24 | 52.0 | Radium | Ra | 88 | (226) | | Cobalt | Co | 27 | 58.9 | Radon | Rn | 86 | (222) | | Copper | Cu | 29 | 63.5 | Rhenium | Re | 75 | 186.2 | | Curium | Cm | 96 | (247) | Rhodium | Rh | 45 | 102.9 | | Dysprosium | Dy | 66 | 162.5 | Rubidium | Rb | 37 | 85.5 | | Einsteinium | Es | 99 | (252) | Ruthenium | Ru | 44 | 101.1 | | Erbium | Er | 68 | 167.3 | Rutherfordium | Rf | 104 | (261) | | Europium | Eu | 63 | 152.0 | Samarium | Sm | 62 | 150.4 | | Fermium | Fm | 100 | (257) | Scandium | Sc | 21 | 45.0 | | Fluorine | F | 9 | 19.0 | Selenium | Se | 34 | 79.0 | | Francium | Fr | 87 | (223) | Silicon | Si | 14 | 28.1 | | Gadolinium | Gd | 64 | 157.3 | Silver | Ag | 47 | 107.9 | | Gallium | Ga | 31 | 69.7 | Sodium | Na | 11 | 23.0 | | Germanium | Ge | 32 | 72.6 | Strontium | Sr | 38 | 87.6 | | Gold | Au | 79 | 197.0 | Sulphur | S | 16 | 32.1 | | Hafnium | Hf | 72 | 178.5 | Tantalum | Ta | 73 | 180.9 | | Hahnium | Ha | 105 | (262) | Technetium | Tc | 43 | (98) | | Helium | He | 2 | 4.0 | Tellurium | Te | 52 | 127.6 | | Holmium | Но | 67 | 164.9 | Terbium | Tb | 65 | 158.9 | | Hydrogen | Н | 1 | 1.0 | Thallium | Tl | 81 | 204.4 | | Indium | In | 49 | 114.8 | Thorium | Th | 90 | 232.0 | | Iodine | I | 53 | 126.9 | Thulium | Tm | 69 | 168.9 | | Iridium | Îr | 77 | 192.2 | Tin | Sn | 50 | 118.7 | | Iron | Fe | 26 | 55.8 | Titanium | Ti | 22 | 47.9 | | Krypton | Kr | 36 | 83.8 | Tungsten | W | 74 | 183.8 | | Lanthanum | La | 57 | 138.9 | Uranium | Ü | 92 | 238.0 | | Lawrencium | Lr | 103 | (262) | Vanadium | V | 23 | 50.9 | | Lead | Pb | 82 | 207.2 | Xenon | Xe | 54 | 131.3 | | Lithium | Li | 3 | 6.9 | Ytterbium | Yb | 70 | 173.0 | | Lutetium | Lu | 71 | 175.0 | Yttrium | Y | 70
39 | 88.9 | | | | | | | | | | | Magnesium | Mg | 12 | 24.3 | Zinc | Zn | 30 | 65.4 | | Manganese
Mendelevium | Mn
Md | 25
101 | 54.9
(258) | Zirconium | Zr | 40 | 91.2 | # NAMES, FORMULAE, AND CHARGES OF SOME COMMON IONS | Positive ions (ca | tions) | Negative ions (anions | Negative ions (anions) | | | |--|-----------------------|---------------------------------|----------------------------------|--|--| | Aluminum | Al ³⁺ | Bromide | Br ⁻ | | | | Ammonium | $\mathrm{NH_4}^+$ | Carbonate | CO_3^{2-} | | | | Barium | Ba^{2+} | Chlorate | ClO ₃ | | | | Calcium | Ca ²⁺ | Chloride | Cl ⁻ | | | | Chromium(II), chromous | Cr ²⁺ | Chlorite | ClO ₂ | | | | Chromium(III), chromic | Cr ³⁺ | Chromate | CrO_2 CrO_4^{2-} | | | | Copper(I)*, cuprous | Cu^+ | | · | | | | Copper(II), cupric | Cu ²⁺ | Cyanide | CN ⁻ | | | | Hydrogen | H^+ | Dichromate | $\operatorname{Cr_2O_7}^{2-}$ | | | | Hydronium | H_3O^+ | Dihydrogen phosphate | $\mathrm{H_2PO_4}^-$ | | | | Iron(II)*, ferrous | Fe ²⁺ | Ethanoate, Acetate | CH ₃ COO ⁻ | | | | Iron(III), ferric | Fe^{3+} | Fluoride | F^{-} | | | | Lead(II), plumbous | Pb ²⁺ | Hydrogen carbonate, bicarbonate | HCO ₃ | | | | Lead(IV), plumbic | Pb ⁴⁺ | Hydrogen oxalate, binoxalate | $HC_2O_4^-$ | | | | Lithium | Li ⁺ | Hydrogen sulphate, bisulphate | HSO ₄ | | | | Magnesium | $\mathrm{Mg}^{2^{+}}$ | Hydrogen sulphide, bisulphide | HS ⁻ | | | | Manganese(II), manganous | Mn ²⁺ | Hydrogen sulphite, bisulphite | HSO ₃ | | | | Manganese(IV) | Mn^{4+} | | 3 | | | | Mercury(I)*, mercurous | $\mathrm{Hg_2}^{2+}$ | Hydroxide | OH ⁻ | | | | Mercury(II), mercuric | Hg^{2+} | Hypochlorite | ClO ⁻ | | | | Potassium | \mathbf{K}^{+} | Iodide | I- | | | | Silver | Ag^+ | Monohydrogen phosphate | $\mathrm{HPO_4}^{2-}$ | | | | Sodium | Na ⁺ | Nitrate | NO_3^- | | | | Tin(II)*, stannous | Sn ²⁺ | Nitrite | NO_2^- | | | | Tin(IV), stannic | Sn ⁴⁺ | Oxalate | $C_2O_4^{\ 2-}$ | | | | Zinc | Zn^{2+} | Oxide** | O^{2-} | | | | * Aqueous solutions are readily oxidized by air. | | Perchlorate | ClO ₄ | | | | ** Not stable in aqueous solutions. | | Permanganate | $\mathrm{MnO_4}^-$ | | | | | | Phosphate | PO_4^{3-} | | | | | | Sulphate | SO_4^{2-} | | | | | | Sulphide | S^{2-} | | | | | | Sulphite | SO_3^{2-} | | | | | | Thiocyanate | SCN^- | | | # SOLUBILITY OF COMMON COMPOUNDS IN WATER The term soluble here means > 0.1 mol/L at 25°C . | NEGATIVE IONS
(Anions) | POSITIVE IONS (Cations) | SOLUBILITY OF
COMPOUNDS | | |--|--|----------------------------|--| | All | Alkali ions:
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺ | Soluble | | | All | Hydrogen ion, H ⁺ | Soluble | | | All | Ammonium ion, NH ₄ ⁺ | Soluble | | | Nitrate, NO ₃ ⁻ | All | Soluble | | | Chloride, Cl or Bromide, Br | All others | Soluble | | | or Iodide, I | Ag ⁺ , Pb ²⁺ , Cu ⁺ | Low Solubility | | | Sulphate, $SO_4^{2-\dots}$ | All others | Soluble | | | Surpliate, 50_4 | Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ | Low Solubility | | | Sulphide, S ²⁻ | Alkali ions, H^+ , NH_4^+ , Be^{2+}
Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} | Soluble | | | | All others | Low Solubility | | | W 1 11 0W | Alkali ions, H^+ , NH_4^+ , Sr^{2+} | Soluble | | | Hydroxide, OH ⁻ ············· | All others | Low Solubility | | | Phosphate, PO ₄ ³⁻ or Carbonate, CO ₃ ²⁻ | Alkali ions, H ⁺ , NH ₄ ⁺ | Soluble | | | or Sulphite, SO_3^{2-} | All others | Low Solubility | | # SOLUBILITY PRODUCT CONSTANTS AT 25°C | Name | Formula | \mathbf{K}_{sp} | |---------------------|-----------------------------------|-----------------------| | barium carbonate | $BaCO_3$ | 2.6×10^{-9} | | barium chromate | BaCrO ₄ | 1.2×10^{-10} | | barium sulphate | BaSO ₄ | 1.1×10^{-10} | | calcium carbonate | CaCO ₃ | 5.0×10^{-9} | | calcium oxalate | CaC ₂ O ₄ | 2.3×10^{-9} | | calcium sulphate | CaSO ₄ | 7.1×10^{-5} | | copper(I) iodide | CuI | 1.3×10^{-12} | | copper(II) iodate | Cu(IO ₃) ₂ | 6.9×10^{-8} | | copper(II) sulphide | CuS | 6.0×10^{-37} | | iron(II) hydroxide | Fe(OH) ₂ | 4.9×10^{-17} | | iron(II) sulphide | FeS | 6.0×10^{-19} | | iron(III) hydroxide | Fe(OH) ₃ | 2.6×10^{-39} | | lead(II) bromide | PbBr_2 | 6.6×10^{-6} | | lead(II) chloride | PbCl ₂ | 1.2×10^{-5} | | lead(II) iodate | Pb(IO ₃) ₂ | 3.7×10^{-13} | | lead(II) iodide | PbI_2 | 8.5×10^{-9} | | lead(II) sulphate | PbSO ₄ | 1.8×10^{-8} | | magnesium carbonate | MgCO ₃ | 6.8×10^{-6} | | magnesium hydroxide | $Mg(OH)_2$ | 5.6×10^{-12} | | silver bromate | AgBrO ₃ | 5.3×10^{-5} | | silver bromide | AgBr | 5.4×10^{-13} | | silver carbonate | Ag_2CO_3 | 8.5×10^{-12} | | silver chloride | AgCl | 1.8×10^{-10} | | silver chromate | Ag_2CrO_4 | 1.1×10^{-12} | | silver iodate | $AgIO_3$ | 3.2×10^{-8} | | silver iodide | AgI | 8.5×10^{-17} | | strontium carbonate | SrCO ₃ | 5.6×10^{-10} | | strontium fluoride | SrF ₂ | 4.3×10^{-9} | | strontium sulphate | SrSO ₄ | 3.4×10^{-7} | | zinc sulphide | ZnS | 2.0×10^{-25} | # RELATIVE STRENGTHS OF BRÖNSTED-LOWRY ACIDS AND BASES in aqueous solution at room temperature | Strength
of Acid | Name of Acid | Acid | Base K _a | Strengt
of Base | |---------------------|---|------------------------|---|--------------------| | Strong | Perchloric | HClO₄ → | H ⁺ + ClO ₄ ⁻ very large | Weak | | \uparrow | Hydriodic | · · | $H^+ + I^-$ very large | | | | Hydrobromic | | H ⁺ + Br ⁻ very large | | | | Hydrochloric | | $H^+ + Cl^-$ very large | | | | Nitric | | H ⁺ + NO ₃ ⁻ very large | | | | Sulphuric | 5 | $H^+ + HSO_4^-$ very large | | | | Hydronium Ion | | $H^+ + H_2O$ | | | | Iodic | • | $H^+ + IO_3^- \dots 1.7 \times 10^{-1}$ | | | | Oxalic | | $H^+ + HC_2O_4^- \dots 5.9 \times 10^{-2}$ | | | | Sulphurous $(SO_2 + H_2O)$ | | $H^+ + HSO_3^- \dots 1.5 \times 10^{-2}$ | | | | Hydrogen sulphate ion | | $H^+ + SO_4^{2-} \dots 1.2 \times 10^{-2}$ | | | | Phosphoric | · | $H^+ + H_2 PO_4^- \dots 7.5 \times 10^{-3}$ | | | | Hexaaquoiron ion, iron(III) ion | 3 4 | $H^+ + Fe(H_2O)_5(OH)^{2+} \dots 6.0 \times 10^{-3}$ | | | | Citric | ` '0 | $H^+ + H_2C_6H_5O_7^- \dots 7.1 \times 10^{-4}$ | | | | Nitrous | 3 0 3 1 | $H^+ + NO_2^- \dots 4.6 \times 10^{-4}$ | | | | Hydrofluoric | - | $H^+ + F^- = 3.5 \times 10^{-4}$ | | | | Methanoic, formic | нсоон ↔ | $H^+ + HCOO^- \dots 1.8 \times 10^{-4}$ | | | | Hexaaquochromium ion, chromium(III) ion | $Cr(H_2O)_6^{3+} \iff$ | $H^+ + Cr(H_2O)_5(OH)^{2+} \dots 1.5 \times 10^{-4}$ | | | | Benzoic | , , , , | $H^+ + C_6 H_5 COO^- \dots 6.5 \times 10^{-5}$ | | | | Hydrogen oxalate ion | 0 5 | $H^+ + C_2 O_4^{2-}$ 6.4×10^{-5} | | | | Ethanoic, acetic | CH₃COOH ← | $H^+ + CH_3COO^- \dots
1.8 \times 10^{-5}$ | | | | Dihydrogen citrate ion | - | $H^+ + HC_6H_5O_7^{2-}$ 1.7×10 ⁻⁵ | | | | Hexaaquoaluminum ion, aluminum ion | | $H^+ + Al(H_2O)_5(OH)^{2+} \dots 1.4 \times 10^{-5}$ | | | | Carbonic $(CO_2 + H_2O)$ | | $H^+ + HCO_3^- \dots 4.3 \times 10^{-7}$ | | | | Monohydrogen citrate ion | | $H^+ + C_6 H_5 O_7^{3-}$ 4.1×10^{-7} | | | | Hydrogen sulphite ion | | $H^+ + SO_3^{2-}$ | | | | Hydrogen sulphide | • | $H^+ + HS^- \dots 9.1 \times 10^{-8}$ | | | | Dihydrogen phosphate ion | = | $H^+ + HPO_4^{\ 2-} \dots 6.2 \times 10^{-8}$ | | | | Boric | = : | $H^+ + H_2BO_3^- \dots 7.3 \times 10^{-10}$ | | | | Ammonium ion | | $H^+ + NH_3$ 5.6×10 ⁻¹⁰ | | | | Hydrocyanic | HCN ← | $H^+ + CN^ 4.9 \times 10^{-10}$ | | | | Phenol | $C_6H_5OH \iff$ | $H^+ + C_6 H_5 O^- \dots 1.3 \times 10^{-10}$ | | | | Hydrogen carbonate ion | | $H^+ + CO_3^{2-}$ 5.6×10 ⁻¹¹ | | | | Hydrogen peroxide | $H_2O_2 \iff$ | $H^+ + HO_2^-$ 2.4×10 ⁻¹² | | | | Monohydrogen phosphate ion | $HPO_4^{2-} \iff$ | $H^+ + PO_4^{3-}$ 2.2×10 ⁻¹³ | | | | Water | $H_2O \iff$ | $H^+ + OH^- \dots 1.0 \times 10^{-14}$ | | | | Hydroxide ion | OH⁻ ← | $H^+ + O^{2-}$ very small | | | | Ammonia | $NH_3 \leftarrow$ | $H^+ + NH_2^-$ very small | \downarrow | | Veak | | - | | Stro | # **ACID-BASE INDICATORS** | INDICATOR | pH RANGE IN WHICH
COLOUR CHANGE OCCURS | COLOUR CHANGE AS pH
INCREASES | |------------------|---|----------------------------------| | Methyl violet | 0.0 – 1.6 | yellow to blue | | Thymol blue | 1.2 – 2.8 | red to yellow | | Orange IV | 1.4 – 2.8 | red to yellow | | Methyl orange | 3.2 - 4.4 | red to yellow | | Bromcresol green | 3.8 - 5.4 | yellow to blue | | Methyl red | 4.8 – 6.0 | red to yellow | | Chlorophenol red | 5.2 - 6.8 | yellow to red | | Bromthymol blue | 6.0 – 7.6 | yellow to blue | | Phenol red | 6.6 - 8.0 | yellow to red | | Neutral red | 6.8 - 8.0 | red to amber | | Thymol blue | 8.0 – 9.6 | yellow to blue | | Phenolphthalein | 8.2 - 10.0 | colourless to pink | | Thymolphthalein | 9.4 – 10.6 | colourless to blue | | Alizarin yellow | 10.1 – 12.0 | yellow to red | | Indigo carmine | 11.4 – 13.0 | blue to yellow |