Chemistry 12 June 1997 Provincial Examination

Answer Key / Scoring Guide

Topics: 1. Kinetics

- 2. Equilibrium
 - 3. Solubility
- 4. Acids, Bases, Salts
- 5. Oxidation Reduction

Part A: Multiple Choice

Q	С	Т	K	S	CGR	Q	С	Т	K	S	CGR
1.	U	1	D	1	I-A-2	25.	U	4	D	1	IV-B-3
2.	Κ	1	D	1	I-B-2	26.	U	4	А	1	IV-F-3
3.	U	1	В	1	I-D-5	27.	U	4	А	1	IV-F-7
4.	Κ	1	D	1	I-E-2	28.	Н	4	С	1	IV-F-4, 6, H-9
5.	Κ	1	D	1	I-E-3	29.	Н	4	А	1	IV-F-11
6.	Κ	2	С	1	II-A-3	30.	U	4	А	1	IV-G-3, F-9
7.	U	2	D	1	II-E-2	31.	U	4	В	1	IV-I-2
8.	Н	2	D	1	II-C-4	32.	U	4	D	1	IV-J-1
9.	U	2	В	1	II-E-2	33.	U	4	С	1	IV-J-4
10.	Κ	2	С	1	II-G-2	34.	Κ	4	D	1	IV-J-5
11.	U	2	В	1	II-I-2	35.	U	4	В	1	IV-J-1, 2, K-1
12.	U	2	А	1	II-J-2	36.	Κ	4	С	1	IV-L-2
13.	U	2	С	1	II-J-4	37.	Κ	5	С	1	V-A-6
14.	Κ	3	С	1	III-A-1	38.	U	5	D	1	V-A-3
15.	U	3	С	1	III-B-3	39.	U	5	А	1	V-A-4
16.	Н	3	В	1	III-B-7	40.	U	5	В	1	V-C-3
17.	U	3	С	1	III-A-8	41.	U	5	А	1	V-D-1
18.	U	3	В	1	III-D-2	42.	U	5	А	1	V-B-4
19.	U	3	С	1	III-D-3	43.	U	5	D	1	V-E-1
20.	U	3	D	1	III-D-4	44.	U	5	С	1	V-F-2
21.	Κ	4	А	1	IV-B-1	45.	U	5	С	1	V-G-4, 6
22.	U	4	В	1	IV-D-2	46.	U	5	С	1	V-G-13
23.	U	4	С	1	IV-B-2	47.	Κ	5	D	1	V-I-3
24.	U	4	D	1	IV-D-7	48.	U	5	А	1	V-J-3

Q		B	С	Т	S	CGR	Q		В	С	Т	S	CGR
1.		1	U	1	4	I-D-7	6.	a	6	U	4	2	IV-E-14
						I-B-2, C-1, D-3		b	6	Κ	4	1	IV-D-7, 8
2.	а	2	Κ	2	1	II-E-2	7.		7	U	4	2	IV-H-9
	b	2	U	2	1	II-E-2	8.		8	U	4	4	IV-F-10
3.		3	U	2	3	II-J-3	9.		9	U	5	3	V-E-2
4.	а	4	Κ	3	1	III-B-5	10.		10	Η	5	3	V-F-1
	b	4	U	3	3	III-D-5	11.	a	11	U	5	1	V-H-1
5.		5	Η	4	2	IV-D-7, 8		b	11	Κ	5	1	V-H-1

Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions)

= 52 (11 questi)

Total = 80 marks

LEGEND:

- **Q** = Question Number **K** = Keyed Response
- **C** = Cognitive Level
- $\mathbf{S} = \mathbf{Score}$

T = Topic **CGR** = Curriculum Guide Reference

B = Score Box Number

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. The combustion of coal, C, produces carbon dioxide gas according to the following equation:

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 394 \text{ kJ}$$

a) What is the value of ΔH for this reaction?

Response:

 $\Delta H = -394 \text{ kJ/mol CO}_2 \leftarrow 1 \text{ mark}$

b) Using collision theory, explain why a lump of coal does not react with oxygen at	
room temperature and pressure.	(1 mark)

Response:

For example:

This reaction has a very high activation energy and therefore collisions will be unsuccessful. $\left\{ \leftarrow 1 \text{ mark} \right\}$

c) Many coal mine disasters have resulted when a spark ignites coal dust in the air.Explain, using collision theory. (2 marks)

Response:

For example:

The spark provides activation energy, therefore more effective collisions occur. $\leftarrow 1$ mark

(1 mark)

2. Consider the following equilibrium:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)} \qquad \Delta H = -18 \text{ kJ}$$

Explain, using Le Chatelier's principle, how the following changes will affect the number of moles of CH₃OH present at equilibrium.

a) Adding a catalyst.

Response:

For example:

The moles of CH₃OH will not change because the equilibrium does not shift. $\leftarrow 1$ mark

b) Decreasing the volume of the system.

(1 mark)

(1 mark)

Response:

For example:

The moles of CH₃OH will increase because the equilibrium shifts right. $\leftarrow 1$ mark

3. Consider the following equilibrium:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} \qquad K_{eq} = 64$$

Equal moles of H_2 and I_2 are placed in a 1.00 L container. At equilibrium, the [HI] = 0.160 mol/L. Calculate the initial $[H_2]$.

Response:

$$K_{eq} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$64 = \frac{(0.160)^{2}}{(x - 0.080)^{2}}$$

$$[H_{2}] = x = 0.10 \text{ mol/L}$$

(3 marks)

4.	a)	Write the net ionic equation for the precipitation reaction that occurs when
		solutions of $NaIO_3$ and $AgNO_3$ are mixed.

(1 mark)

Response:

$$\operatorname{Ag}^{+}_{(aq)} + \operatorname{IO}^{-}_{3(aq)} \to \operatorname{AgIO}_{3(s)} \leftarrow 1 \operatorname{mark}$$

b) Using appropriate calculations, explain why a precipitate forms when 15.0	mL
of 0.50 M NaIO ₃ are added to 35.0 mL of 0.50 M AgNO ₃ .	(3 marks)

Response:

$$\left[\mathrm{IO}_{3}^{-}\right] = 0.50 \,\mathrm{M} \times \frac{15.0 \,\mathrm{mL}}{50.0 \,\mathrm{mL}} = 0.15 \,\mathrm{M} \quad \leftarrow \frac{1}{2} \,\mathrm{mark}$$

$$\left[\text{Ag}^{+} \right] = 0.50 \text{ M} \times \frac{35.0 \text{ mL}}{50.0 \text{ mL}} = 0.35 \text{ M} \quad \leftarrow \frac{1}{2} \text{ mark}$$

Trial
$$K_{sp} = [Ag^+][IO_3^-]$$

= 0.35 M×0.15 M
= 0.052 \leftarrow 1 mark

Since Trial K_{sp} (0.052) > K_{sp} (3.2×10^{-8}) , a precipitate forms. $\leftarrow 1$ mark

Response:

$$2Ag_{(aq)}^{+} + CO_{3}^{2^{-}}(aq) \rightarrow Ag_{2}CO_{3(s)}$$

$$K_{sp} = \left[Ag^{+}\right]^{2} \left[CO_{3}^{2^{-}}\right]$$

$$= \left(1.3 \times 10^{-4}\right)^{2} \left[CO_{3}^{2^{-}}\right] \qquad \leftarrow 1 \text{ mark}$$

$$\left[CO_{3}^{2^{-}}\right] = 5.0 \times 10^{-4} \text{ M} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$\frac{1}{2}$ mark was deducted for incorrect significant figures

6.	a) Write the net ionic equation for the predominant reaction between	
	$NaHSO_3$ and $NaHC_2O_4$.	(2 marks)

Response:

$$HSO_3^- + HC_2O_4^- \rightleftharpoons C_2O_4^{2-} + H_2SO_3$$

b) Explain why the reactants are favoured in the above reaction.

(1 mark)

Response:

For example:

 H_2SO_3 is a stronger acid than $HC_2O_4^- \leftarrow 1$ mark

(2 marks)

(4 marks)

Response:

After dilution [KOH] = 0. 040 M ×
$$\frac{40.0 \text{ mL}}{100.0 \text{ mL}}$$
 $\leftarrow \frac{1}{2}$ mark
[OH] = 0.016 M $\leftarrow \frac{1}{2}$ mark
[H₃O⁺] = $\frac{1.0 \times 10^{-14}}{0.016}$ = 6.2×10⁻¹³ M \leftarrow 1 mark

8.	Calculate the pH	I in 100.0 mL	of 0.400 M H ₃ BO ₃ .
----	------------------	---------------	---

Response:

9. Balance the following redox reaction:

$$\text{ClO}_4^- + \text{Al} \rightarrow \text{Cl}^- + \text{Al}^{3+}$$
 (acidic)

Response:

$$1 \text{ mark} \xrightarrow{3} (\text{ClO}_4^- + 8\text{H}^+ + 8\text{e}^- \rightarrow \text{Cl}^- + 4\text{H}_2\text{O}) \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$\xrightarrow{8} (\text{Al} \rightarrow \text{Al}^{3+} + 3\text{e}^-) \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$\xrightarrow{3\text{ClO}_4^- + 8\text{Al} + 24\text{H}^+ \rightarrow 3\text{Cl}^- + 8\text{Al}^{3+} + 12\text{H}_2\text{O}} \qquad \leftarrow 1 \text{ mark}$$

10. An impure sample of iron was dissolved in acid. The Fe^{2+} in this solution was titrated with 0.0210 M KMnO₄. Use the following data table and redox equation to determine the moles of Fe^{2+} in the sample. (3 marks)

$$MnO_4^{-} + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

TRIAL	VOLUME KMnO ₄
1	37.26 mL
2	35.18 mL
3	35.22 mL

Response:

Average volume $\text{KMnO}_4 = 35.20 \text{ mL} \leftarrow 1 \text{ mark}$

mol KMnO₄ =
$$(0.03520 \text{ L})(0.0210 \text{ M}) = 7.392 \times 10^{-4} \text{ mol} \leftarrow 1 \text{ mark}$$

mol Fe²⁺ =
$$\left(\frac{5 \text{ mol Fe}^{2+}}{1 \text{ mol MnO}_4^-}\right) (7.39 \times 10^{-4} \text{ mol}) = 3.70 \times 10^{-3} \text{ mol} \leftarrow 1 \text{ mark}$$

$\frac{1}{2}$ mark was deducted for incorrect significant figures

11. The overall reaction in a fuel cell is:

 $2H_2 + O_2 \rightarrow 2H_2O$

a) Write the equation for the half-reaction at the anode.

Response:

For example:

 $H_{2(g)} + 2OH^- \rightarrow 2H_2O + 2e^- \leftarrow 1 \text{ mark}$

b) Is the overall reaction spontaneous? Explain.

(1 mark)

(1 mark)

Response:

Yes, the reaction is spontaneous.

For example:

- 0.82 (-0.41) = 1.23 V
- Positive E° value
- Electrochemical cell

END OF KEY