Chemistry 12 January 1997 Provincial Examination

Answer Key / Scoring Guide

- **Topics:** 1. Kinetics
 - 2. Equilibrium
 - 3. Solubility
 - 4. Acids, Bases, Salts
 - 5. Oxidation Reduction

Part A: Multiple Choice

Q	С	Т	K	S	CGR	Q	С	Т	K	S	CGR
1.	Κ	1	С	1	I-B-2	25.	U	4	С	1	IV-D-3
2.	U	1	D	1	I-A-2	26.	U	4	В	1	IV-F-6
3.	Κ	1	D	1	I-C-1	27.	U	4	В	1	IV-F-7
4.	Н	1	В	1	I-D-5	28.	U	4	В	1	IV-H-9
5.	U	1	С	1	I-E-2	29.	U	4	А	1	IV-G-3, F-9
6.	U	2	В	1	II-B-1, A-3	30.	U	4	А	1	IV-G-2
7.	U	2	А	1	II-C-4	31.	Κ	4	В	1	IV-D-11
8.	U	2	D	1	II-D-1	32.	U	4	В	1	IV-J-2
9.	Κ	2	В	1	II-D-3	33.	Κ	4	D	1	IV-J-6
10.	U	2	С	1	II-G-2	34.	U	4	D	1	IV-H-9
11.	U	2	D	1	II-J-3	35.	Η	4	С	1	IV-K-5
12.	U	2	С	1	II-I-1	36.	U	4	А	1	IV-L-3
13.	U	2	С	1	II-J-1	37.	U	5	С	1	V-A-1
14.	U	3	А	1	III-B-7	38.	U	5	А	1	V-A-3
15.	U	3	D	1	III-B-3, C-2	39.	U	5	В	1	V-A-7
16.	Κ	3	С	1	III-A-1	40.	U	5	А	1	V-C-2
17.	U	3	А	1	III-D-3	41.	Η	5	С	1	V-D-2, 4
18.	Κ	3	С	1	III-A-4	42.	Κ	5	А	1	V-D-1
19.	U	3	D	1	III-A-8	43.	U	5	D	1	V-E-1
20.	U	3	D	1	III-E-1	44.	U	5	С	1	V-G-4
21.	Κ	4	В	1	IV-A-2	45.	Κ	5	А	1	V-H-2
22.	U	4	D	1	IV-A-3	46.	U	5	D	1	V-G-11
23.	Κ	4	D	1	IV-A-4	47.	U	5	А	1	V-I-5
24.	U	4	С	1	IV-B-2, C-3	48.	U	5	D	1	V-J- 2

Part B: Written Response

Q	B	С	Т	S	CGR	Q	В	С	Т	S	CGR
1.	1	U	1	2	I-D-2, 4	7.	7	U	4	3	IV-E-3
2.	2	U	1	2	I-C-1, F-1	8.	8	U	4	3	IV-F-10
3.	3	Κ	2	2	II-C-1	9.	9	U	4	4	IV-J-5
4.	4	U	2	3	II-J-2	10.	10	U	5	3	V-F-1
5.	5	U	3	2	III-D-4	11.	11	Н	5	5	V-G-1, 5, 11
6.	6	U	3	3	III-D-6						

Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions) **Total = 80 marks**

Q = Question Number **K** = Keyed Response **C** = Cognitive Level

 $\mathbf{S} = \mathbf{Score}$

T = Topic **CGR** = Curriculum Guide Reference

B = Score Box Number

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. Define the term *activated complex*.

(2 marks)

Response:

An *activated complex* is a short-lived, unstable, high energy chemical species that forms when reactant particles change to products.

 $\leftarrow 2 \text{ marks}$

2.	Using collision theory, explain why a mixture of natural gas and air does not react at	
	room temperature but explodes when a piece of platinum is placed in the gas mixture.	(2 marks)

For example:

The platinum is acting as a catalyst, increasing the rate of this reaction by providing an alternate pathway that has a lower activation energy, therefore more particles undergo successful collisions.

 $\leftarrow 2 \text{ marks}$

For example:

- Closed container.
- Constant temperature.
- Reversible reaction.
- Both reactants and products present.
- No changes in macroscopic properties.
- Rate of forward reaction equals rate of reverse reaction.
- Responds to imposed stresses.

any four for $\frac{1}{2}$ mark each

4. At high temperature, 0.500 mol HBr was placed in a 1.00 L container where it decomposed to give the equilibrium:

$$2 \text{HBr}_{(g)} \rightleftharpoons \text{H}_{2(g)} + \text{Br}_{2(g)}$$

At equilibrium, the $[Br_2]$ is 0.0855 mol/L. What is the value of the equilibrium constant? (3 marks)

Response:

	$2 \text{HBr}_{(g)}$	\rightleftharpoons H _{2(g)}	+ $\operatorname{Br}_{2(g)}$	
[I]	0.500	0	0	
[C]	-0.171	+0.0855	+0.0855	$\leftarrow 1\frac{1}{2}$ marks
[E]	0.329	0.0855	0.0855	J

$$K_{eq} = \frac{[H_2][Br_2]}{[HBr]^2}$$

$$= \frac{(0.0855)(0.0855)}{(0.329)^2}$$

$$= 6.75 \times 10^{-2}$$

5. A saturated solution of BaF_2 has a $[Ba^{2+}]$ of 3.6×10^{-3} M.	
Calculate the K_{sp} value.	(2 marks)

$$BaF_{2(s)} \rightleftharpoons Ba^{2+}_{(aq)} + 2F^{-}_{(aq)}$$

$$3.6 \times 10^{-3} \text{ M } 7.2 \times 10^{-3} \text{ M}$$

$$K_{sp} = [Ba^{2+}][F^{-}]^{2}$$

$$= (3.6 \times 10^{-3})(7.2 \times 10^{-3})^{2}$$

$$= 1.9 \times 10^{-7}$$

6.	Calculate the maximum mass of Na_2SO_4 which can be dissolved	
	in 2.0 L of 1.5 M Ca(NO ₃) ₂ without a precipitate forming.	(3 marks)

$$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

$$1.5 M x$$

$$K_{sp} \text{ for } CaSO_{4} = [Ca^{2+}][SO_{4}^{2-}]$$

$$7.1 \times 10^{-5} = (1.5)(x)$$

$$x = [SO_{4}^{2-}] = [Na_{2}SO_{4}] = 4.7 \times 10^{-5} M$$

mass of Na₂SO₄ required = 4.7×10^{-5} mol/L × 142.1 g/mol × 2.0 L

 $= 1.3 \times 10^{-2} \,\mathrm{g}$

 $\leftarrow 1 \text{ mark}$

7. a) Write two equations showing the amphiprotic nature of water as it reacts with HCO_3^{-1} .

(1 mark)

Response:

For example:

$$H_2O + HCO_3^- \rightarrow H_3O^+ + CO_3^{2-} \leftarrow 1 \text{ mark}$$

 $\mathrm{H_2O} + \mathrm{HCO_3^-} \rightarrow \mathrm{H_2CO_3} + \mathrm{OH^-} \qquad \leftarrow \mathbf{1} \text{ mark}$

b) Calculate the K_b for HCO_3^- .

Response:

$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}} = 2.3 \times 10^{-8} \quad \leftarrow 1 \text{ mark}$$

$$\begin{array}{c|cccc} C_{6}H_{5}COOH_{(aq)} + H_{2}O &\rightleftharpoons & H_{3}O^{+}_{(aq)} + C_{6}H_{5}COO^{-}_{(aq)} \\ \hline \begin{bmatrix} I \end{bmatrix} & 0.550 & 0 & 0 \\ \hline \hline \begin{bmatrix} C \end{bmatrix} & -x & +x & +x \\ \hline \begin{bmatrix} E \end{bmatrix} & 0.550 - x & x & x \end{array} \right\} \leftarrow 1\frac{1}{2} \text{ marks}$$

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[C_{6}H_{5}COO^{-}\right]}{\left[C_{6}H_{5}COOH\right]}$$

$$\frac{x^{2}}{0.550 - x} = 6.5 \times 10^{-5}$$
assume $x << 0.550$

$$\frac{x^{2}}{0.550} = 6.5 \times 10^{-5}$$
 $x = 0.0060$

$$\left[H_{3}O^{+}\right] = 6.0 \times 10^{-3} M$$

Note: $(\frac{1}{2}$ mark deduction for incorrect significant figures.)

For example:

$$\begin{aligned} & \text{HCl}_{(aq)} + \text{NaOH}_{(aq)} \rightarrow \text{NaCl}_{(aq)} + \text{H}_2\text{O}_{(1)} \\ & \text{mol HCl} = 0.500 \text{ M} \times 0.0200 \text{ L} = 0.0100 \text{ mol} \\ & \text{mol NaOH} = 0.300 \text{ M} \times 0.0300 \text{ L} = 0.00900 \text{ mol} \end{aligned} \right\} \leftarrow 1 \text{ mark} \\ & \text{Excess mol HCl} = \text{mol H}_3\text{O}^+ = 0.0010 \text{ mol} \qquad \leftarrow 1 \text{ mark} \\ & \left[\text{H}_3\text{O}^+\right] = \frac{0.0010 \text{ mol}}{0.0500 \text{ L}} = 0.020 \text{ M} \qquad \leftarrow 1 \text{ mark} \\ & \text{pH} = -\log(0.020) = 1.70 \qquad \leftarrow 1 \text{ mark} \end{aligned}$$

10. Consider the following reaction:

$$Cr_2O_7^{2-} + 6Br^- + 14H^+ \rightarrow 2Cr^{3+} + 3Br_2 + 7H_2O$$

In a redox titration, 15.58 mL of 0.125 M $\text{Cr}_2\text{O}_7^{2-}$ was needed to completely oxidize the Br⁻ in a 25.00 mL sample of NaBr. Calculate the [Br⁻] in the original solution. (3 marks)

Response:

$$mol \ Cr_2 O_7^{2-} = (0.01558 \ L)(0.125 \ M) = 1.9475 \times 10^{-3} \ mol \ Cr_2 O_7^{2-} \qquad \leftarrow 1 \ mark$$

$$mol \ Br^- = (1.9475 \times 10^{-3} \ mol \ Cr_2 O_7^{2-}) \left(\frac{6 \ mol \ Br^-}{1 \ mol \ Cr_2 O_7^{2-}}\right)$$

$$= 1.1685 \times 10^{-2} \ mol \ Br^- \qquad \leftarrow 1 \ mark$$

$$\left[Br^-\right] = \frac{1.1685 \times 10^{-2} \ mol \ Br^-}{0.02500 \ L}$$

$$= 4.67 \times 10^{-1} M \qquad \leftarrow 1 \ mark$$

Note: $(\frac{1}{2}$ mark deduction for incorrect significant figures.)

- 11. Consider the following materials and cell diagram:
 - silver, aluminum and nickel electrodes
 - 1.0 M solutions of AgNO₃, Al(NO₃)₃ and Ni(NO₃)₂
 - a) From the above list, select the materials that are capable of producing the greatest voltage, then label the diagram below. (3 marks)

	b)	Calculate the initial voltage for the electrochemical cell in part a	.). ((1 mark)
--	----	--	-------	----------

Response:

Initial cell voltage = 0.80 + 1.66 = 2.46 V $\leftarrow 1$ mark

c) Which two metals from the above list would produce an electrochemical cell with the smallest initial voltage? (1 mark)

Response:

Ag and Ni $\leftarrow 1 \text{ mark}$

END OF KEY