Chemistry 12 August 1996 Provincial Examination

ANSWER KEY / SCORING GUIDE

- **Topics:** 1. Kinetics
 - 2. Equilibrium
 - 3. Solubility
 - 4. Acids, Bases, Salts
 - 5. Oxidation Reduction

Part A: Multiple Choice

Q	С	Т	K	S	CGR	Q	С	Т	K	S	CGR
1.	Κ	1	D	1	I-B-2	25.	Κ	4	С	1	IV-E-1
2.	U	1	С	1	I-A-4	26.	U	4	В	1	IV-F-9
3.	Κ	1	D	1	I-D-3	27.	U	4	D	1	IV-F-13, 14
4.	U	1	В	1	I-E-1	28.	U	4	А	1	IV-G-3
5.	U	1	В	1	I-F-1	29.	U	4	А	1	IV-H-3
6.	U	2	С	1	II-A-3	30.	Κ	4	А	1	IV-H-6, 7, 8
7.	U	2	В	1	II-B-1	31.	Н	4	С	1	IV-H-2, 9
8.	U	2	В	1	II-C-1	32.	U	4	В	1	IV-H-10
9.	U	2	С	1	II-C-4	33.	U	4	А	1	IV-J-1
10.	U	2	D	1	II-D-1	34.	U	4	D	1	IV-J-1
11.	U	2	А	1	II-E-3	35.	U	4	А	1	IV-J-3
12.	Н	2	А	1	II-E-2	36.	Κ	4	С	1	IV-L-1
13.	Н	2	С	1	II-J-4	37.	U	5	В	1	V-A-1, 4
14.	U	3	В	1	III-A-5	38.	U	5	D	1	V-A-6
15.	U	3	С	1	III-B-3	39.	U	5	А	1	V-C-1
16.	Н	3	В	1	III-C-1	40.	U	5	С	1	V-D-2
17.	U	3	В	1	III-D-3	41.	Κ	5	А	1	V-D-4
18.	U	3	D	1	III-D-5	42.	U	5	С	1	V-E-1
19.	U	3	В	1	III-D-7	43.	Κ	5	А	1	V-G-5
20.	U	3	В	1	III-E-2	44.	U	5	С	1	V-G-6
21.	U	4	D	1	IV-B-2	45.	U	5	С	1	V-G-11
22.	U	4	В	1	IV-C-2	46.	U	5	С	1	V-G-2
23.	U	4	А	1	IV-D-7	47.	U	5	А	1	V-I-3, 4
24.	Κ	4	А	1	IV-D-6	48.	Κ	5	В	1	V-J-3

Part B: Written Response

Q	В	С	Т	S	CGR	Q	В	С	Т	S	CGR
1.	1	U	1	2	I-B-1	7.	7	U	4	2	IV-D-3, F-8
2.	2	Κ	1	2	I-F-1, 2	8.	8	U	4	4	IV-F-1, 6, H-9
3.	3	U	2	2	II-E-2	9.	9	Н	4	4	IV-F-7, H-9
4.	4	U	2	3	II-J-2	10.	10	U	5	4	V-C-3
5.	5	U	3	3	III-C-3	11.	11	U	5	3	V-B-3, 2
6.	6	U	3	3	III-D-4						

Multiple Choice	=	48 (48 questions)
Written Response	=	32 (11 questions)
Total	=	80 marks

LEGEND:C = Cognitive LevelT = TopicQ = Question NumberS = ScoreC = Cognitive LevelK = Keyed ResponseS = ScoreCGR = Curriculum Guide ReferenceB = Score Box NumberC = Cognitive Level

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. A strip of magnesium was cut into 4 pieces, each of length 1.0 cm and mass of 0.00864 g. Each piece was placed into a test tube containing 5.0 mL of different concentrations of HC1. The time required for each piece of magnesium to be completely consumed was recorded:

TRIAL	[HCl]	TIME (s)
1	0.50 M	200
2	1.0 M	38
3	3.0 M	12
4	6.0 M	6

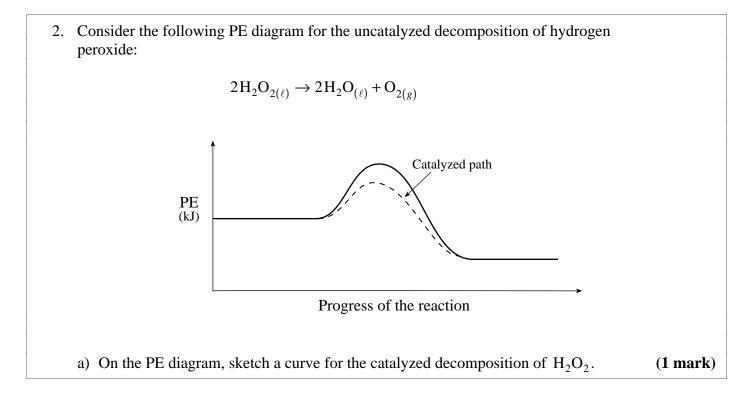
a) Calculate the rate of reaction for magnesium in 3.0 M HCl.

(1 mark)

Response:

For example:

0.00864 g/12 s = 0.00072 g/s


b) How does the [HCl	affect the reaction rate?
-------------------	-----	---------------------------

(1 mark)

Response:

For example:

The higher the concentration of HCl, the faster the reaction rate.

Response:

The catalyzed graph has a lower activation energy.

b) Compare the ΔH of the catalyzed and uncatalyzed reactions. (1 mark)

Response:

The ΔH for catalyzed and uncatalyzed reactions are the same.

3. Consider the following equilibrium:

$$\operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)} \rightleftharpoons \operatorname{PCl}_{5(g)} \Delta H = -88 \text{ kJ}$$

What happens to the $[PCl_3]$ when additional Cl_2 is added at constant temperature and volume? Explain. (2 marks)

Response:

For example:

The $[PCl_3]$ decreases when additional Cl_2 is added. The addition of Cl_2 causes the equilibrium to shift right.

4. Consider the following equilibrium:

$$2\mathrm{CO}_{2(g)} \rightleftharpoons 2\mathrm{CO}_{(g)} + \mathrm{O}_{2(g)}$$

Initially, a 1.0 L container is filled with 0.050 mol of CO_2 . At equilibrium,

the $[CO_2]$ is 0.030 mol/L. Calculate the value of K_{eq} . (3 marks)

Response:

	2CO ₂	\rightleftharpoons 2CO	+ O ₂	
[I]	0.050	0	0	$\left. \left. \left$
[C]	-0.020	+0.020	+0.010	
[E]	0.030	0.020	0.010	

$$K_{eq} = \frac{[CO]^{2}[O_{2}]}{[CO_{2}]^{2}}$$

= $\frac{(0.020)^{2}(0.010)}{(0.030)^{2}}$
= 4.4×10^{-3} $\leftarrow 1\frac{1}{2}$ marks

Deduct $\frac{1}{2}$ mark for incorrect significant figures.

5. a) Identify a compound that could be used to precipitate both the $Mg^{2+}_{(aq)}$ and $Ca^{2+}_{(aq)}$ from "hard water".

Response:

For example:

Add NaOH to precipitate Mg^{2+} and Ca^{2+}

b) Write the net ionic equations for the reactions.

(2 marks)

(1 mark)

Response:

For example:

$$Mg^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Mg(OH)_{2(s)} \leftarrow 1 \text{ mark}$$
$$Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Ca(OH)_{2(s)} \leftarrow 1 \text{ mark}$$

Response:

$$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

$$x \qquad x$$

$$K_{sp} = \left[Ca^{2+}\right] \left[SO_{4}^{2-}\right]$$

$$7.1 \times 10^{-5} = (x)(x)$$

$$7.1 \times 10^{-5} = x^{2}$$

$$x = 8.4 \times 10^{-3} \text{ M}$$

$$g CaSO_{4} = 8.4 \times 10^{-3} \text{ M} \times 136.2 \text{ g/mol} \times 0.1000 \text{ L}$$

$$= 1.1 \times 10^{-1} \text{ g}$$

$$\left. \right\} \leftarrow 1 \text{ mark}$$

7. Lactic acid, $HC_3H_5O_3$, is a compound that accumulates in muscle tissue during exertion. Write the equation and the K_a expression for the ionization of lactic acid in water.

(2 marks)

Response:

For example:

$$HC_{3}H_{5}O_{3(aq)} + H_{2}O_{(\ell)} \rightleftharpoons H_{3}O^{+}_{(aq)} + C_{3}H_{5}O_{3}^{-}_{(aq)} \leftarrow 1 \text{ mark}$$
$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[C_{3}H_{5}O_{3}^{-}\right]}{\left[HC_{3}H_{5}O_{3}\right]} \leftarrow 1 \text{ mark}$$

8.	The ionization constant for water,	K_w , is 9.6×10 ⁻¹⁴	⁴ at 60°C.
----	------------------------------------	----------------------------------	-----------------------

a) Write an equation including the heat term representing the ionization of water. (2 marks)

Response:

For example:

 $2H_2O + Heat \rightleftharpoons H_3O^+ + OH^-$

b) Calculate the pH for water at 60° C.

(2 marks)

Response:

For example:

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 9.6 \times 10^{-14}$$

$$[H_{3}O^{+}] = [OH^{-}] = \sqrt{9.6 \times 10^{-14}}$$

$$[H_{3}O^{+}] = 3.10 \times 10^{-7}$$

$$pH = 6.51$$

$$\leftarrow 2 \text{ marks}$$

9. Four monoprotic acids of the same concentration are labelled as follows:

SOLUTION	LABEL
А	$\left[OH^{-} \right] = 5.0 \times 10^{-11} M$
В	$[H^+] = 0.20 M$
С	pOH=11.30 M
D	pH = 1.20 M

List the four solutions in order of decreasing acidity. Use calculations to support your answer. (4 marks)

Response: For example:

Solution A: $[H_3O^+] = \frac{1.00 \times 10^{-14}}{5.0 \times 10^{-11} M} = 2.0 \times 10^{-4}$ Solution B: $[H_3O^+] = 0.20 M = 2.0 \times 10^{-1}$ Solution C: pH = 14.00 - 11.30 = 2.70 $[H_3O^+] = -antilog 2.70 = 2.0 \times 10^{-3}$ Solution D: $[H_3O^+] = -antilog 1.20 = 6.3 \times 10^{-2}$

Decreasing acidity: B > D > C > A $\leftarrow 1 \text{ mark}$

10.	a)	Write the balanced equation for the redox reaction that occurs when $H_2S_{(g)}$ is	
		bubbled into an acidified solution of $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$.	(3 marks)

Response:

$$\left(\operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}}+14\operatorname{H}^{+}+6\mathrm{e}^{-}\rightleftharpoons 2\operatorname{Cr}^{3^{+}}+7\operatorname{H}_{2}\operatorname{O}\right) \leftarrow \frac{1}{2}$$
 mark

 $\begin{array}{ll} 1 \text{ mark} \rightarrow & 3 \Big(H_2 S \rightleftharpoons S + 2 H^+ + 2 e^- \Big) & \leftarrow \frac{1}{2} \text{ mark} \\ \hline \text{for balancing} & electrons & \hline Cr_2 O_7^{\ 2^-} + 3 H_2 S + 8 H^+ \rightarrow 2 C r^{3+} + 3 S + 7 H_2 O & \leftarrow 1 \text{ mark} \\ \end{array}$

b) Calculate the E°	for this reaction.
------------------------------	--------------------

Response:

+1.09 V

(1 mark)

11.	The metals A, B and C were separately placed in solutions containing the metallic
	ions A^{2+} , B^+ and C^{2+} . It was found that A reacted with B^+ , but A did not react
	with C^{2+} .

a) Identify the strongest oxidizing agent.

(1 mark)

Response:

 B^+

b) List the metals in order of increasing strength as reducing agents.	(1 mark)
--	----------

Response:

B, A, C

c) Identify the ion(s) that will react with metal C.	(1 mark)
--	----------

Response:

 B^{+} and A^{2+}

END OF KEY