Chemistry 12 June 1996 Provincial Examination

Answer Key / Scoring Guide

- **Topics:** 1. Kinetics
 - 2. Equilibrium
 - 3. Solubility
 - 4. Acids, Bases, Salts
 - 5. Oxidation Reduction

Part A: Multiple Choice

Q	С	Т	K	S	CGR	Q	С	Т	K	S	CGR
1.	U	1	А	1	I-A-2	25.	U	4	А	1	IV-D-12, 11
2.	U	1	В	1	I-B-3	26.	U	4	В	1	IV-F-3
3.	Κ	1	В	1	I-C-1	27.	Κ	4	В	1	IV-F-4
4.	U	1	В	1	I-D-5, E-4	28.	Н	4	С	1	IV-F-11
5.	U	1	А	1	I-E-2	29.	U	4	А	1	IV-G-2
6.	U	2	С	1	II-B-1, A-3	30.	Н	4	А	1	IV-G-3
7.	U	2	D	1	II-C-4	31.	U	4	D	1	IV-H-9
8.	U	2	А	1	II-E-2	32.	Н	4	D	1	IV-H-13
9.	Н	2	В	1	II-D-1	33.	U	4	С	1	IV-I-2
10.	Н	2	А	1	II-F-1	34.	Н	4	В	1	IV-J-6
11.	U	2	D	1	II-G-1	35.	U	4	D	1	IV-J-1
12.	U	2	В	1	II-I-2	36.	Κ	4	В	1	IV-L-3
13.	U	2	С	1	II-J-1	37.	Κ	5	А	1	V-A-2
14.	U	3	D	1	III-A-8	38.	U	5	С	1	V-A-3
15.	U	3	А	1	III-B-2, 3	39.	U	5	А	1	V-B-3
16.	U	3	В	1	III-B-5, 7	40.	Н	5	D	1	V-B-1, 2, 3
17.	U	3	А	1	III-B-6	41.	U	5	С	1	V-C-1
18.	U	3	D	1	III-D-4	42.	U	5	D	1	V-D-1, 2
19.	U	3	В	1	III-D-5	43.	U	5	С	1	V-G-8
20.	Н	3	С	1	III-E-2	44.	U	5	В	1	V-G-5
21.	Κ	4	С	1	IV-A-2	45.	U	5	С	1	V-G-11
22.	U	4	А	1	IV-B-2, C-3	46.	Κ	5	В	1	V-H-1
23.	U	4	В	1	IV-D-2	47.	U	5	С	1	V-H-3
24.	U	4	В	1	IV-D-7, 8	48.	U	5	А	1	V-J-3

Part B: Written Response

Q	В	С	Т	S	CGR	Q	В	С	Т	S	CGR
1.	1	U	1	2	I-E-2	7.	7	U	4	2	IV-A-2, D-2, 12
2.	2	U	1	1	I-D-8	8.	8	U	4	4	IV-H-3, H-15
3.	3	U	2	2	II-E-2	9.	9	Н	4	3	IV-K-3, 6
4.	4	U	2	3	II-J-1, H-2	10.	10	U	5	4	V-J-4, 3
5.	5	U	3	4	III-D-3	11.	11	U	5	3	V-E-1
6.	6	U	3	4	III-D-7						

Multiple Choice = 48 (48 questions) Written Response = 32 (11 questions) **Total = 80 marks**

LEGEND:

Q = Question Number **K** = Keyed Response \mathbf{C} = Cognitive Level

 $\mathbf{S} = \mathbf{Score}$

T = Topic **CGR** = Curriculum Guide Reference

B = Score Box Number

PART B: WRITTEN RESPONSE

Value: 32 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

- 1. Consider the following reaction mechanism:
 - $\begin{array}{lll} \text{Step 1:} & \text{ClO}_{2(g)} + \text{F}_{2(g)} \rightarrow \text{FClO}_{2(g)} + \text{F}_{(g)} & (\text{slow}) \\ \\ \text{Step 2:} & \text{F}_{(g)} + \text{ClO}_{2(g)} \rightarrow \text{FClO}_{2(g)} & (\text{fast}) \end{array}$
 - a) Write the equation for the overall reaction.

Response:

 $2\text{ClO}_2 + \text{F}_2 \rightarrow 2\text{FClO}_2$

b) Identify a reaction intermediate.

Response:

F

2. Consider the decomposition of ammonia:

$$2\mathrm{NH}_{3(g)} \to \mathrm{N}_{2(g)} + 3\mathrm{H}_{2(g)}$$

When 1.0 mol NH_3 reacts, 46 kJ of energy is absorbed. Rewrite the equation for this reaction, including the value of the heat term. (1 mark)

Response:

 $2NH_3 + 92 \text{ kJ} \rightarrow N_2 + 3H_2$

(1 mark)

(1 mark)

3. Consider the following equilibrium:

$$2\operatorname{CrO}_{4}^{2^{-}}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}}_{(aq)} + 2\operatorname{OH}_{(aq)}^{-}$$

yellow orange

When HCl is added drop-by-drop to the yellow solution above, the solution turns
orange. Explain why this colour change occurs.(2 marks)

Response:

For example:

HCl neutralizes $OH^ H^+ + OH^- \rightarrow H_2O$ $\therefore [OH^-]$ decreases, therefore equilibrium shifts right (orange). $\leftarrow 2$ marks

4. Consider the following equilibrium:

$$2\mathrm{NO}_{(g)} + \mathrm{O}_{2(g)} \rightleftharpoons 2\mathrm{NO}_{2(g)}$$

At 227° C in a 2.00 L container there are 0.044 mol NO, 0.100 mol O₂ and 7.88 mol NO₂ at equilibrium. Calculate the equilibrium constant. (3 marks)

Response:

 $2NO + O_2 \rightleftharpoons 2NO_2$

$$\frac{0.044 \text{ mol}}{2.00 \text{ L}} \qquad \frac{0.100 \text{ mol}}{2.00 \text{ L}} \qquad \frac{7.88 \text{ mol}}{2.00 \text{ L}} \\ \text{[E]} = 0.022 \qquad = 0.0500 \qquad = 3.94 \end{cases} \right\} \leftarrow 1 \text{ mark}$$

$$K_{eq} = \frac{[NO_2]^2}{[NO]^2[O_2]} = \frac{(3.94)^2}{(0.022)^2(0.0500)} \qquad \leftarrow 1\frac{1}{2} \text{ marks}$$
$$= 6.4 \times 10^5 \qquad \leftarrow \frac{1}{2} \text{ mark}$$

5. A 25.00 mL sample of a saturated ZnF_2 solution was evaporated to dryness. The mass of the residue was 0.508 g. Calculate the solubility product constant of ZnF_2 .

(4 marks)

Response:

$$\begin{array}{l} \operatorname{mol} \operatorname{ZnF}_{2} = \frac{0.508 \text{ g}}{103.4 \text{ g/mol}} = 4.91 \times 10^{-3} \\ \operatorname{solubility} \ \operatorname{ZnF}_{2} = \frac{4.91 \times 10^{-3} \text{ mol}}{0.02500 \text{ L}} = 1.97 \times 10^{-1} \text{ M} \\ \end{array} \right\} \leftarrow 1 \frac{1}{2} \text{ marks} \\ \operatorname{ZnF}_{2(s)} \rightleftharpoons \operatorname{Zn}^{2+}_{(aq)} + 2\operatorname{F}^{-}_{(aq)} \\ x & 2x \\ \left[\operatorname{Zn}^{2+}\right] = x = 1.97 \times 10^{-1} \text{ M} \\ \left[\operatorname{F}^{-}\right] = 2x = 2(1.97 \times 10^{-1}) = 3.93 \times 10^{-1} \text{ M} \\ \left[\operatorname{F}^{-}\right] = 2x = 2(1.97 \times 10^{-1}) = 3.93 \times 10^{-1} \text{ M} \\ \operatorname{K}_{sp} = \left[\operatorname{Zn}^{2+}\right] \left[\operatorname{F}^{-}\right]^{2} \\ = (1.97 \times 10^{-1}) (3.93 \times 10^{-1})^{2} \\ = 3.04 \times 10^{-2} \end{array} \right\} \leftarrow 1 \frac{1}{2} \text{ marks}$$

Deduct $\frac{1}{2}$ mark for incorrect significant figures.

6. The following data were collected when a 25.00 mL sample of water containing chloride ion was titrated using 0.100 M AgNO₃ to completely precipitate the chloride ion.

Initial volume of AgNO ₃	18.20 mL
Final volume of AgNO ₃	27.22 mL

a) Write the net ionic equation for the precipitation reaction.

Response:

$\operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)} \to \operatorname{AgCl}_{(s)}$

b) Calculate the [Cl^{-}].	(3 marks)
--------------------	-------------	-----------

Response:

Volume of AgNO₃ used = 27.22 - 18.20 = 9.02 mL
$$\leftarrow 1 \text{ mark}$$

mol AgNO₃ = 0.100 M × 0.00902 L = 9.02 × 10⁻⁴ $\leftarrow \frac{1}{2} \text{ mark}$
mol Cl⁻ = 9.02 × 10⁻⁴ mol Ag⁺ × $\frac{1 \text{ mol Cl}^{-}}{1 \text{ mol Ag}^{+}}$ = 9.02 × 10⁻⁴ $\leftarrow \frac{1}{2} \text{ mark}$
[Cl⁻] = $\frac{9.02 \times 10^{-4} \text{ mol}}{0.02500 \text{ L}}$ = 3.61 × 10⁻² M $\leftarrow 1 \text{ mark}$

Deduct $\frac{1}{2}$ mark for incorrect significant figures.

(1 mark)

7. A 1.0 M unknown solution was analyzed and the following was observed:

Response:

For example:

Unknown is an acid because it reacts with magnesium.	1 mark
or	
bromthymol blue is yellow \therefore pH < 6.0	
Unknown is a weak acid because it has poor electrical conductivity.	
or	$\left. \left. \left$
indicators are both yellow which indicates a pH between 4.4 and 6.0	

Response:

	$\mathbf{HNO}_2 + \mathbf{H}_2\mathbf{O} \rightleftharpoons$	H_3O^+	+ NO_2^{-}	
[I]	2.0	0	0	
[C]	-x	+ <i>x</i>	+x	
[E]	2.0 - x	x	x	
				_

 $\approx 2.0 \leftarrow \frac{1}{2}$ mark assumption

$$K_{a} \text{ HNO}_{2} = 4.6 \times 10^{-4} = \frac{\left[\text{H}_{3}\text{O}^{+}\right]\left[\text{NO}_{2}^{-}\right]}{\left[\text{HNO}_{2}\right]}$$

$$4.6 \times 10^{-4} = \frac{x^{2}}{2.0}$$

$$3.0 \times 10^{-2} = x$$

$$\left[\text{H}_{3}\text{O}^{+}\right] = 3.0 \times 10^{-2} \text{ M}$$

$$p\text{H} = -\log 3.0 \times 10^{-2} = 1.52$$

$$\left\{ \begin{array}{c} \leftarrow 2 \text{ marks} \\ \leftarrow$$

- 9. A 2.0 L solution contains one mole of the weak acid, H_3PO_4 , in equilibrium with one mole of the salt, NaH_2PO_4 .
 - a) Write an equation that represents this equilibrium.

(2 marks)

Response:

For example:

 $H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^-$

b) Explain why the pH of this solution does not change significantly when 10.0 mL	
of 1.0 M KOH is added.	(1 mark)

Response:

For example:

A buffer solution forms and resists a change in pH.

10. Consider the following electrolytic cell used for the electrolysis of molten AgCl.

Response:

Electron flow is from the anode to the cathode on the diagram.

b)	Write the equation for the	half-reaction taking place at the anode.	(1 mark)
----	----------------------------	--	----------

Response:

$$2\text{Cl}^- \rightarrow \text{Cl}_2 + 2\text{e}^-$$

(1 mark	c)	Write the equation for the half-reaction taking place at the cathode.	(1 mark)
---------	----	---	----------

Response:

$$Ag^+ + e^- \rightarrow Ag$$

d) Write the equ	uation for the overall reaction.	(1 mark)
------------------	----------------------------------	----------

Response:

 $2Ag^+ + 2Cl^- \rightarrow 2Ag + Cl_2$

11. Write the balanced equation for the half-reaction:

 $Cu(OH)_2 \rightarrow Cu_2O$ (basic)

(3 marks)

Response:

 $2\mathrm{Cu(OH)}_2 + 2\mathrm{e}^- \rightarrow \mathrm{Cu}_2\mathrm{O} + \mathrm{H}_2\mathrm{O} + 2\mathrm{OH}^-$

Balanced in acid $\leftarrow 2$ marksConvert to base $\leftarrow 1$ mark

END OF KEY