Chemistry 12 August 2003 Provincial Examination

ANSWER KEY / SCORING GUIDE

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	S	СО	PLO	Q	K	С	S	CO	PLO
1.	А	Κ	1	1	A1	25.	D	U	2	4	J11
2.	D	U	1	1	A4	26.	D	U	1	4	K6
3.	С	Κ	1	1	B1, 3	27.	С	Κ	1	4	L2
4.	А	Η	2	1	B6, 7	28.	D	U	2	4	L12
5.	С	U	2	1	B9	29.	Α	U	1	4	M2
6.	С	U	1	1	C1	30.	В	Κ	1	4	N1
7.	А	U	1	2	D3	31.	С	U	2	4	M2, N3
8.	С	Κ	2	2	E1	32.	D	Н	2	4	O3
9.	С	U	1	2	E2, 4	33.	В	U	1	4	O5
10.	А	Η	1	2	E2	34.	D	Κ	1	4	P1
11.	А	Η	1	2	F1	35.	В	U	2	4	P3
12.	А	Κ	1	2	F3	36.	С	U	1	4	Q2
13.	D	U	1	2	F4	37.	D	Κ	1	4	R1
14.	D	U	2	2	F8	38.	Α	U	1	5	S 1
15.	D	Κ	1	3	G1	39.	D	Κ	1	5	S 1
16.	А	Κ	1	3	G3, 6	40.	В	Η	1	5	S2
17.	С	U	1	3	G8	41.	В	U	2	5	S4
18.	D	Η	1	3	H2	42.	С	U	1	5	S6
19.	В	U	1	3	H3	43.	В	U	1	5	U2
20.	В	U	1	3	H5	44.	D	U	1	5	U5
21.	А	U	1	3	I3	45.	С	U	1	5	U3, 4
22.	С	U	2	3	H1, I5	46.	В	U	1	5	U2
23.	А	Κ	1	4	J2	47.	В	U	1	5	U9
24.	В	Η	2	4	H2, J3	48.	С	U	1	5	W4

Multiple Choice = 60 marks (48 questions)

Part B: Written Response

Q	В	С	S	СО	PLO
1.	1	U	3	1	B9
2.	2	U	2	1	C4
3.	3	Н	3	2	E3
4.	4	U	3	2	F8
5.	5	U	6	3	I6
6.	6	U	2	4	J3
7.	7	U	2	4	K10
8.	8	U	2	4	L7
9.	9	U	5	4	M3
10.	10	U	3	4	Q3
11.	11	U	3	5	S6, T2
12.	12	Н	1	5	S6, W5
13.	13	U	5	5	W2, 3, 4

Written Response = 40 marks

Multiple Choice =	60 (48 questions)
Written Response =	40 (13 questions)
EXAMINATION TOTAL =	100 marks

LEGEND:					
\mathbf{Q} = Question Number	$\mathbf{K} = \mathbf{K}$ eyed Response	\mathbf{C} = Cognitive Level			
\mathbf{B} = Score Box Number	S = Score	CO = Curriculum Organizer			
PLO = Prescribed Learning Outcome					

PART B: WRITTEN RESPONSE

Value: 40 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You are expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculations, full marks will NOT be given for providing only an answer.

1. Consider the following reaction:

(3 marks)

 $Mg_{(s)} + 2HBr_{(aq)} \rightarrow MgBr_{2(aq)} + H_{2(g)} + energy$

In terms of collision theory, describe how each of the factors below would influence the reaction rate.

a) Increasing the concentration of HBr:

Solution:

For Example:

Greater concentration and more collisions. Therefore more successful collisions and a greater rate.

 $\leftarrow 1 \text{ mark}$

b) Decreasing the temperature:

Solution:

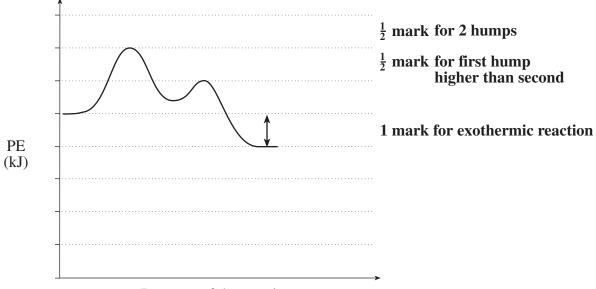
For Example:

Fewer collisions with sufficient energy to overcome PE barrier. Therefore, a lower rate.

 $\leftarrow 1 \text{ mark}$

c) Increasing the surface area of Mg:

Solution:


For Example:

Increased surface area leads to more collisions and more successful collisions. Therefore, a higher rate. $\leftarrow 1 \text{ mark}$

2. Consider the following reaction mechanism:

Step 1	$NO_{(g)} + O_{2(g)} \rightarrow NO_{3(g)}$ slow
Step 2	$NO_{3(g)} + NO_{(g)} \rightarrow 2NO_{2(g)}$

The overall reaction is exothermic. Sketch a PE diagram on the axes below to describe the energy changes that occur as the reaction takes place.

Progress of the reaction

Solution:

For Example:

See diagram above.

3. Consider the following equilibrium system:

(3 marks)

 $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$

The system is said to "shift right" as the result of the addition of **extra** $H_{2(g)}$. Describe the sequence of changes in both forward and reverse reaction rates as the system goes from the original equilibrium to the new equilibrium.

Solution:

For Example:

As $[H_2]$ is increased the forward rate increases. The forward rate will be greater than the reverse rate, resulting in more HI being produced.	$\left. \right\} \leftarrow 1 \text{ mark}$
The $[H_2]$ is consumed as the shift occurs and the forward rate starts to decrease. The increasing [HI] results in an increasing reverse rate.	$\left. \right\} \leftarrow 1 \text{ mark}$
At the new equilibrium the forward and reverse rates will be equal.	\leftarrow 1 mark

4. Consider the following equilibrium system:

$$2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)} \qquad K_{eq} = 8.5$$

A closed flask is found to contain 0.40 M NO_(g), 0.32 M $Cl_{2(g)}$ and 5.6 M NOCl_(g). Use appropriate calculations to determine the direction the reaction proceeds to reach equilibrium.

Solution:

For Example:

Trial
$$K_{eq} = \frac{[\text{NOCl}]^2}{[\text{NO}]^2 [\text{Cl}_2]} = \frac{(5.6)^2}{(0.40)^2 (0.32)} = 6.1 \times 10^2$$
 $\left. \right\} \leftarrow 1 \text{ mark}$

Since Trial
$$K_{eq} > K_{eq}$$
, $\leftarrow 1 \text{ mark}$

the equilibrium will proceed left to reduce the Trial K_{eq} value to K_{eq} . $\leftarrow 1$ mark

5. Calculate the maximum mass of $BaCl_{2(s)}$ that can be added to 250 mL of 0.50 M Pb(NO₃)_{2(aq)} without forming a precipitate of PbCl_{2(s)}. (6 marks)

Solution:

For Example:

$$PbCl_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2Cl^{-}_{(aq)}$$

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$

$$1.2 \times 10^{-5} = (0.50)[Cl^{-}]^{2}$$

$$[Cl^{-}] = 4.90 \times 10^{-3} M$$

$$(Cl^{-}) = 4.90 \times 10^{-3} M$$

In 250 mL:

moles
$$Cl^{-} = 4.90 \times 10^{-3} \text{ mol/L} \times 0.25 \text{ L} = 1.22 \times 10^{-3} \text{ mol } Cl^{-}$$

moles $BaCl_{2} = \frac{1}{2} \text{ mol } Cl^{-}$
 $= \frac{1}{2} \times 1.22 \times 10^{-3} \text{ mol}$
 $= 6.12 \times 10^{-4} \text{ mol}$ $\leftarrow 1 \text{ mark}$
Mass $BaCl_{2} = 6.12 \times 10^{-4} \text{ mol} \times \frac{208.3 \text{ g}}{1 \text{ mol}}$
 $= 0.13 \text{ g } BaCl_{2}$ $\leftarrow 1 \text{ mark}$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

6. Write the net ionic equation for the acid-base reaction that occurs between $NaCN_{(aq)}$ and $NH_4Cl_{(aq)}$. (2 marks)

Solution:

For Example:

$$\operatorname{CN}_{(aq)}^{-} + \operatorname{NH}_{4(aq)}^{+} \rightleftharpoons \operatorname{HCN}_{(aq)} + \operatorname{NH}_{3(aq)} \leftrightarrow 2 \operatorname{marks}$$

7. Define the term *amphiprotic* and give an example of an amphiprotic anion.

(2 marks)

Solution:

For Example:

Definition: Amphiprotic describes a substance that can act as either an acid or a base.

Example: HCO₃⁻

← 2 marks

8. At 20°C, the ionization constant of water (K_w) is 6.76×10^{-15} . Calculate the $[H_3O^+]$ of water at 20°C. (2 marks)

Solution:

For Example:

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 6.76 \times 10^{-15} \qquad \leftarrow 1 \text{ mark}$$

Since $[H_{3}O^{+}] = [OH^{-}], [H_{3}O^{+}]^{2} = 6.76 \times 10^{-15}$
 $[H_{3}O^{+}] = 8.22 \times 10^{-8} \text{ M} \qquad \leftarrow 1 \text{ mark}$

9. Calculate the pH of 0.50 M NaF.

(5 marks)

Solution:

For Example:

$$\begin{bmatrix} F^{-} + H_{2}O \rightleftharpoons HF + OH^{-} \\ 0.50 & 0 & 0 \\ \hline 0.50 - x & +x & +x \\ \hline E \end{bmatrix} 0.50 - x & x & x \\ (assume x is negligible) \\ K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-4}} = 2.86 \times 10^{-11} = \frac{[HF][OH^{-}]}{[F^{-}]} \\ 2.86 \times 10^{-11} = \frac{x^{2}}{0.50} & \leftarrow 1 \text{ mark} \end{bmatrix}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

10. Outline a procedure to prepare a buffer solution.

Solution:

For Example:

Prepare an aqueous mixture that contains:

- 1. a weak acid
- 2. a salt of its conjugate base
- 3. the acid and salt in sufficient concentrations

- 13 -

 \leftarrow 3 marks

11. A reaction occurs when copper metal is dropped into a solution of silver nitrate. Write the balanced formula equation and the balanced net ionic equation for this reaction.

(3 marks)

Solution:

For Example:

Formula equation:

 $\operatorname{Cu}_{(s)} + 2\operatorname{AgNO}_{3(aq)} \rightarrow \operatorname{Cu}(\operatorname{NO}_3)_{2(aq)} + 2\operatorname{Ag}_{(s)}$

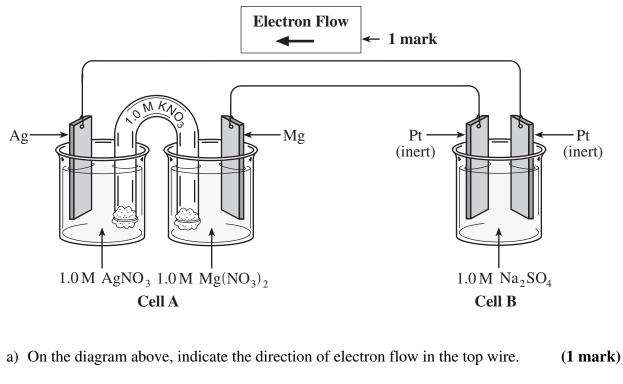
 \leftarrow 3 marks

Net ionic equation:

$$\operatorname{Cu}_{(s)} + 2\operatorname{Ag}^{+}_{(aq)} \rightarrow \operatorname{Cu}^{2+}_{(aq)} + 2\operatorname{Ag}_{(s)}$$

12. When setting up the apparatus to electroplate a zinc object with copper, the object is suspended in a Cu²⁺ solution. Explain why it is a good idea to turn on the power supply before immersing the electrodes in the solution.

(1 mark)


Solution:

For Example:

If you did not turn on the power supply before immersing the electrodes in the solution, the Cu^{2+} would react spontaneously with the zinc to be plated, oxidizing the zinc.

 \leftarrow 1 mark

13. Consider the following apparatus consisting of an electrochemical cell joined to an electrolytic cell:

Solution:

For Example:

 See diagram above.
 ← 1 mark

 b) Which metal in cell A is the cathode?
 (1 mark)

 Solution:
 Cathode: Ag

 c) Write the anode and cathode half-reactions for cell B.
 (3 marks)

 Solution:
 For Example:

END OF KEY