Chemistry 12 June 2003 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	С	U	1	1	A1	25.	А	U	1	4	K1
2.	D	Κ	1	1	A5	26.	В	U	2	4	K8
3.	С	Κ	1	1	B2	27.	В	Κ	1	4	L4
4.	С	U	1	1	B1	28.	А	Κ	1	4	L10
5.	В	U	1	1	B6	29.	А	Κ	1	4	M1
6.	В	U	1	1	C5	30.	В	U	1	4	N2
7.	В	Κ	1	2	D2	31.	D	U	2	4	N4
8.	А	U	1	2	D7	32.	D	Κ	1	4	O1, Q2
9.	А	U	1	2	E2	33.	С	U	2	4	O5
10.	А	Н	2	2	E3	34.	С	Κ	1	4	P1
11.	С	Κ	1	2	F1	35.	В	Η	2	4	P2
12.	А	Κ	1	2	F2	36.	D	U	2	4	Q5
13.	D	U	1	2	F4	37.	С	Κ	1	4	R4
14.	В	U	1	2	F5	38.	В	U	1	5	S 1
15.	В	Κ	2	3	G8	39.	В	U	1	5	S2
16.	А	Н	1	3	G6, H5	40.	С	U	1	5	S5
17.	D	U	1	3	H1	41.	D	U	1	5	T4
18.	С	U	2	3	H2	42.	D	U	2	5	T6
19.	D	U	1	3	H4	43.	С	U	1	5	U9, 11
20.	В	U	1	3	H5	44.	С	Η	1	5	U2
21.	С	U	1	3	I4	45.	В	U	2	5	U9
22.	А	Н	2	3	I4	46.	В	U	1	5	S1, U11
23.	В	Κ	1	4	J4	47.	D	Η	1	5	V2
24.	В	Κ	1	4	J2	48.	D	U	2	5	W4

Multiple Choice = 60 marks (48 questions)

Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	3	1	A3
2.	2	U	2	1	C5
3.	3	U	3	2	D9
4.	4	Н	3	2	F8
5.	5	U	5	3	I3, 7
6.	6	U	5	4	J7, 11, K6, 8
7.	7	U	3	4	L1, 11
8.	8	U	5	4	M3, N2
9.	9	U	2	4	Q4
10.	10	U	4	5	T2
11.	11	U	2	5	S6
12.	12	Н	3	5	V2

Written Response = 40 marks

EXAMINATION TOTAL =	100 marks
Written Response =	40 (12 questions)
Multiple Choice $=$	60 (48 questions)

LEGEND:				
\mathbf{Q} = Question Number	$\mathbf{K} = \mathbf{K}$ eyed Response	\mathbf{C} = Cognitive Level		
$\mathbf{B} = $ Score Box Number	S = Score	CO = Curriculum Organizer		
PLO = Prescribed Learning Outcome				

PART B: WRITTEN RESPONSE

Value: 40 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You are expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculations, full marks will NOT be given for providing only an answer.

1. Consider the following reaction in an open flask:

(3 marks)

$$CaCO_{3(s)} + 2HCl_{(aq)} \rightarrow CaCl_{2(aq)} + H_2O_{(\ell)} + CO_{2(g)}$$

A 155.0 g sample of $CaCO_{3(s)}$ is placed in the flask and $HCl_{(aq)}$ is added. The reaction consumes $HCl_{(aq)}$ at an average rate of 0.200 mol/min for 10.0 min. What mass of $CaCO_{3(s)}$ remains?

Solution:

Amount of HCl reacting =
$$0.200 \text{ mol}/\text{min} \times 10.0 \text{ min} = 2.00 \text{ mol}$$
 $\leftarrow \frac{1}{2} \text{ mark}$

Moles of CaCO₃ reacting = 2.00 mol HCl ×
$$\frac{1 \text{CaCO}_3}{2 \text{HCl}}$$
 = 1.00 mol CaCO₃ $\leftarrow \frac{1}{2}$ mark

Mass of CaCO₃ reacting = 1.00 mol CaCO₃ ×
$$\frac{100.1 \text{ g}}{1 \text{ mol}}$$
 = 1.00 × 10² g \leftarrow 1 mark

Mass remaining =
$$155.0 \text{ g} - 100. \text{ g} = 55 \text{ g}$$
 $\leftarrow 1 \text{ mark}$

2. a) Write the equation for Step 3 in the following reaction mechanism.

Step 1	$2NO \rightarrow N_2O_2$
Step 2	$\mathrm{N_2O_2} + \mathrm{H_2} \rightarrow \mathrm{N_2O} + \mathrm{H_2O}$
Step 3	?
Overall Reaction	$2\mathrm{NO} + 2\mathrm{H}_2 \rightarrow \mathrm{N}_2 + 2\mathrm{H}_2\mathrm{O}$

Solution:

Step 3:
$$N_2O + H_2 \rightarrow N_2 + H_2O \leftarrow 1 \text{ mark}$$

b) Identify a reaction intermediate in the above mechanism. (1 mark)

Solution:

Either
$$N_2O_2$$
 OR N_2O \leftarrow 1 mark

3. Consider the following exothermic reaction:

$$C_3H_{8(g)} + 5O_{2(g)} \xrightarrow{?} 3CO_{2(g)} + 4H_2O_{(g)}$$

Explain, in terms of increasing or decreasing entropy and enthalpy, whether or not the reaction will reach equilibrium. (3 marks)

Solution:

Entropy increases in the forward reaction.	$\leftarrow 1 \text{ mark}$
Enthalpy decreases in the forward reaction.	$\leftarrow 1 \text{ mark}$
Since both favour products, equilibrium will not be attained; or the reaction will go to completion.	\leftarrow 1 mark

4. Given the reacting system:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} K_{eq} = 64$$

Equal moles of H_2 , I_2 and HI are placed in a 1.0 L container. Use calculations to determine the direction the reaction will proceed in order to reach equilibrium. (3 marks)

Solution:

For Example:

$$H_{2} + I_{2} \rightleftharpoons 2HI$$

$$[I] x x x x$$

$$Trial K_{eq} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$= \frac{(x)^{2}}{(x)(x)}$$

$$= 1 \qquad \leftarrow 2 \text{ marks}$$

Since Trial $K_{eq} < K_{eq}$, equilibrium is established by proceeding $\leftarrow 1$ mark to the right.

5. After a 50.0 mL sample of a saturated solution of Ag_2SO_4 was heated to dryness, 7.2×10^{-4} g of solid Ag_2SO_4 remained. What is the value of K_{sp} for Ag_2SO_4 ?

Solution:

For Example:

$$\begin{aligned} \operatorname{Ag}_{2}\operatorname{SO}_{4(s)} &\rightleftharpoons 2\operatorname{Ag}_{(aq)}^{+} + \operatorname{SO}_{4(aq)}^{2-} \\ \left[\operatorname{Ag}_{2}\operatorname{SO}_{4}\right] &= \frac{7.2 \times 10^{-4} \text{ g}}{0.0500 \text{ L}} \times \frac{1 \text{ mole}}{311.9 \text{ g}} = 4.62 \times 10^{-5} \text{ M} &\leftarrow 1 \text{ mark} \\ \left[\operatorname{Ag}^{+}\right] &= 2 \times 4.62 \times 10^{-5} \text{ M} = 9.23 \times 10^{-5} \text{ M} &\leftarrow 1 \text{ mark} \\ \left[\operatorname{SO}_{4}^{2-}\right] &= 4.62 \times 10^{-5} \text{ M} &\leftarrow 1 \text{ mark} \\ \left[\operatorname{SO}_{4}^{2-}\right] &= 4.62 \times 10^{-5} \text{ M} &\leftarrow 1 \text{ mark} \\ \operatorname{K}_{sp} &= \left[\operatorname{Ag}^{+}\right]^{2} \left[\operatorname{SO}_{4}^{2-}\right] &\leftarrow 1 \text{ mark} \\ &= \left(9.23 \times 10^{-5}\right)^{2} \left(4.62 \times 10^{-5}\right) &\leftarrow 1 \text{ mark} \\ &= 3.9 \times 10^{-13} &\leftarrow 1 \text{ mark} \end{aligned}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

(5 marks)

6.	a) Write an equation to represent the predominant reaction when $HC_2O_4^-$ is mixed with HSO_4^- .		(1 mark)
Solut	ion:		
For E	Example:		
	$HC_2O_4^- + HSO_4^- \rightleftharpoons H_2C_2O_4 + SO_4^{2-}$	\leftarrow 1 mark	
Solut	b) Justify your statement by comparing K_a values.		(1 mark)
For F	Tramplo.		
TUL	sxumpte.		
	$K_a HSO_4^- > K_a HC_2O_4^-$	$\leftarrow 1 \text{ mark}$	
	c) Identify a conjugate acid-base pair.		(1 mark)
Solut	ion:		
For E	Example:		
	HSO_4^- and SO_4^{2-}	1 mork	
OR	$HC_2O_4^-$ and $H_2C_2O_4^-$	\leftarrow 1 mark	
		-	
	d) Predict whether the equilibrium will favour the formation of react products. Explain.	ants or	(2 marks)
Solut	ion:		
For E	Example:		
	Reactants are favoured since $K_a HSO_4^- < K_a H_2 C_2 O_4$	\leftarrow 2 marks	

7. Write an equation representing the ionization of water and state both ion concentrations that exist for pure water to have a pH = 7.20.

(3 marks)

Solution:

$$H_2O_{(\ell)} + H_2O_{(\ell)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)} \qquad \leftarrow 1 \text{ mark}$$

Since pH = 7.20, $[H_3O^+] = 6.3 \times 10^{-8} \text{ M} \qquad \leftarrow 1 \text{ mark}$
 $[H_3O^+] = [OH^-] = 6.3 \times 10^{-8} \text{ M} \qquad \leftarrow 1 \text{ mark}$

8. Calculate the pH of 0.25 M NaHCO₃, a basic salt.

Solution:

For Example:

$$\begin{vmatrix} HCO_{3}^{-} + H_{2}O \rightleftharpoons H_{2}CO_{3} + OH^{-} \\ 0.25 & 0 & 0 \\ \hline C & -x & +x & +x \\ \hline E & 0.25 - x & x & x \\ (assume x is negligible) \\ K_{b} = \frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}} = \frac{\left[H_{2}CO_{3}\right]\left[OH^{-}\right]}{\left[HCO_{3}^{-}\right]} & \leftarrow 1 \text{ mark} \\ 2.33 \times 10^{-8} = \frac{x^{2}}{0.25} & \leftarrow 1 \text{ mark} \\ x = \left[OH^{-}\right] = 7.62 \times 10^{-5} \text{ M} & \leftarrow 1 \text{ mark} \\ pOH = 4.12 \\ pH = 9.88 & & \leftarrow 1 \text{ mark} \\ \end{vmatrix}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

9. Explain why the action of a buffer solution is limited.

(2 marks)

Solution:

For Example:

Buffer action depends on the presence of

- sufficient amounts $\leftarrow 1 \text{ mark}$
- of weak acid and conjugate base $\leftarrow 1 \text{ mark}$

in the buffer solution.

July 25, 2003

10. Balance the following redox equation:

 $H_2S + CrO_4^{2-} \rightarrow S_8 + Cr^{3+}$ (acidic)

Solution:

For Example:

$$\begin{pmatrix} 8H_2S \rightarrow S_8 + 16H^+ + 16e^- \end{pmatrix} \times 3 \\ \hline (3e^- + 8H^+ + CrO_4^{2-} \rightarrow Cr^{3+} + 4H_2O) \times 16 \\ \hline 24H_2S + 128H^+ + 16CrO_4^{2-} \rightarrow 3S_8 + 48H^+ + 16Cr^{3+} + 64H_2O \\ \hline 24H_2S + 80H^+ + 16CrO_4^{2-} \rightarrow 3S_8 + 16Cr^{3+} + 64H_2O \\ \hline 1 \text{ mark for the final balanced equation} \end{cases}$$

(4 marks)

11. An excess of copper solid is dropped into a solution which contains $AgNO_3$, $Fe(NO_3)_3$ and $Zn(NO_3)_2$. Write the equations for any reduction half-reactions that occur over time under standard conditions. (2 marks)

Solution:

$$Ag^+ + e^- \rightarrow Ag$$
 $\leftarrow 1 \text{ mark}$ $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $\leftarrow 1 \text{ mark}$

a) Predict what should happen to the Fe in Beaker A. (1 mark)

Solution:

For Example:

Prediction: The iron is oxidized. $\leftarrow 1 \text{ mark}$

b) Predict what should happen to the Fe in Beaker B. Explain.	(2 marks)
Solution:	
For Example:	
Prediction: Nothing happens to the Fe.	$\leftarrow 1 \text{ mark}$
Explanation: Zn is oxidized and protects the Fe. OR The Fe is cathodically protected by the Zn.	$ brace \leftarrow 1 \mathbf{mark}$

END OF KEY