Chemistry 12 April 2001 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

Organizers	Sub-Organizers
1. Reaction Kinetics	A, B, C
2. Dynamic Equilibrium	D, E, F
3. Solubility Equilibria	G, H, I
4. Acids, Bases, and Salts	J, K, L, M, N, O, P, Q, R
5. Oxidation – Reduction	S, T, U, V, W

Part A: Multiple Choice

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	D	K	1	1	A1	25.	В	U	1	4	K9
2.	А	U	1	1	A4	26.	С	U	2	4	K11
3.	С	Κ	1	1	B1	27.	В	U	1	4	L11
4.	В	U	1	1	B6	28.	D	U	2	4	L12
5.	С	U	1	1	B4	29.	С	U	1	4	M4
6.	D	Н	1	1	C5	30.	В	U	1	4	N3
7.	С	U	1	2	D3	31.	С	U	1	4	N2
8.	А	Κ	2	2	D5	32.	D	Η	1	4	O3; K6
9.	В	U	1	2	E2	33.	С	U	1	4	P2
10.	D	U	2	2	E2, 3	34.	В	Κ	1	4	P1, 5
11.	В	Н	2	2	F4	35.	В	U	1	4	Q2
12.	А	Κ	1	2	F3	36.	D	Κ	1	4	R1
13.	D	U	1	2	F6	37.	А	Κ	1	4	R2
14.	D	Κ	1	3	G1	38.	С	U	1	5	S 1
15.	D	Κ	1	3	G2	39.	В	U	2	5	S 3
16.	А	U	1	3	G8	40.	D	U	1	5	S 5
17.	С	U	1	3	H1	41.	С	Η	1	5	S 5
18.	А	Н	2	3	H5	42.	D	U	1	5	S 6
19.	В	U	2	3	H6	43.	В	U	1	5	T4
20.	А	Κ	1	3	I2	44.	А	Н	1	5	U5
21.	С	Κ	2	4	J2	45.	D	Κ	1	5	U9
22.	С	U	1	4	J11	46.	А	Κ	2	5	U10
23.	А	Н	2	4	K1,6	47.	D	Κ	1	5	W2
24.	А	Κ	1	4	K6	48.	В	U	2	5	W4

Multiple Choice = 60 marks (48 questions)

Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	5	1	A3
2.	2	U	3	2	F7
3.	3	U	4	2	F8; D6
4.	4	U	3	3	I7
5.	5	U	4	3	G5; I3
6.	6	U	2	4	J7
7.	7	U	5	4	P1, 6
8.	8	U	5	4	M3
9.	9	U	5	5	T2
10.	10	U	4	5	W8

Written Response = 40 marks

Multiple Choice = 60 (48 questions) Written Response = 40 (10 questions) EXAMINATION TOTAL = 100 marks

LEGEND:Q = Question NumberK = Keyed ResponseC = Cognitive LevelB = Score Box NumberS = ScoreCO = Curriculum OrganizerPLO = Prescribed Learning OutcomeCO = Curriculum Organizer

PART B: WRITTEN RESPONSE

Value: 40 marks	Suggested Time: 50 minutes
INSTRUCTIONS:	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner.
	Your steps and assumptions leading to a solution must be written in the spaces below the questions.
	Answers must include units where appropriate and be given to the correct number of significant figures.
	For questions involving calculation, full marks will NOT be given for providing only an answer.

1. An Alka-Seltzer tablet is added to water to produce carbon dioxide gas. The gas was collected using water displacement.

The following data is recorded:

Time (s)	Volume of CO_2 (mL)
0.0	0
10.0	3.0
20.0	20.0
30.0	33.5
40.0	43.0
50.0	43.0
60.0	43.0

a) Calculate the average rate of reaction for the formation of CO_2 gas for the times:

i)
$$0 - 10 s$$
 (1 mark)

Solution:

rate =
$$\frac{\Delta \text{ vol}}{\Delta t} = \frac{3.0 \text{ mL} - 0.0 \text{ mL}}{10.0 \text{ s}}$$

= $\frac{3.0 \text{ mL}}{10.0 \text{ s}} = 0.30 \text{ mL/s}$ $\leftarrow 1 \text{ mark}$

ii)
$$10-20$$
 s (1 mark)

Solution:

rate =
$$\frac{\Delta \text{ vol}}{\Delta t} = \frac{20.0 \text{ mL} - 3.0 \text{ mL}}{20.0 \text{ s} - 10.0 \text{ s}}$$

= $\frac{17.0 \text{ mL}}{10.0 \text{ s}}$
= 1.70 mL/s \leftarrow 1 mark

b) Suggest a reason why the rate of reaction from 0 to 10.0 s is slower than the rate from 10.0 to 20.0 s ? (1 mark)

Solution:

For Example:

The surface area of the tablet increases as the tablet crumbles. $\leftarrow 1 \text{ mark}$

c) The rate of reaction is not constant during the entire interval from 10.0 to 40.0 s.Describe the change in rate and explain a reason for the change. (2 marks)

Solution:

For Example:

The rate decreases during the interval because the surface area decreases. $\left\{ \leftarrow 2 \text{ marks} \right\}$

A flask is initially filled with some HI. At equilibrium, the [HI] = 0.80 mol/L.
 What is the [H₂] at equilibrium? (3 marks)

$$2\mathrm{HI}_{(g)} \rightleftharpoons \mathrm{H}_{2(g)} + \mathrm{I}_{2(g)} \qquad \mathrm{K}_{eq} = 0.25$$

Solution:

For Example:

$$K_{eq} = \frac{[H_2][I_2]}{[HI]^2} \leftarrow 1 \text{ mark}$$
$$0.25 = \frac{(x)(x)}{(0.80)^2} \leftarrow 1 \text{ mark}$$
$$x = 0.40 \quad \leftarrow 1 \text{ mark}$$
$$[H_2] = 0.40 \text{ M}$$

3. Consider the following equilibrium system:

$$2\text{NOCl}_{(g)} \rightleftharpoons 2\text{NO}_{(g)} + \text{Cl}_{2(g)} \qquad \text{K}_{eq} = 1.6 \times 10^{-5}$$

A 1.00 L flask is filled with 0.20 mol NOCl, 0.10 mol NO and 0.10 mol Cl₂. State and show by calculation the direction in which the reaction proceeds to reach equilibrium. (4 marks)

Solution:

For Example:

Direction: Reaction proceeds to the left. $\leftarrow 1 \text{ mark}$

Calculations:

$$2\text{NOCl}_{(g)} \rightleftharpoons 2\text{NO}_{(g)} + \text{Cl}_{2(g)}$$

$$K_{Trial} = \frac{[\text{NO}]^2[\text{Cl}_2]}{[\text{NOCl}]^2} \leftarrow 1 \text{ mark}$$

$$= \frac{(0.10)^2(0.10)}{(0.20)^2}$$

$$= 0.025 \leftarrow 1 \text{ mark}$$

$$K_{Trial} > \text{K}_{eq} \leftarrow 1 \text{ mark}$$

4. In a titration, 25.00 mL of $NaCl_{(aq)}$ reacts completely with 42.20 mL of 0.100 M AgNO₃. What is the [Cl⁻] in the original solution? (3 marks)

Solution:

$$\begin{array}{l} \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)} \to \operatorname{AgCl}_{(s)} \\ \operatorname{mol} \operatorname{Ag}^{+} = (0.100 \operatorname{mol/L})(0.04220 \operatorname{L}) \\ = 0.00422 \operatorname{mol} \\ \operatorname{mol} \operatorname{Cl}^{-} = \operatorname{mol} \operatorname{Ag}^{+} \\ \operatorname{mol} \operatorname{Cl}^{-} = \operatorname{mol} \operatorname{Ag}^{+} \\ \left[\operatorname{Cl}^{-}\right] = \frac{0.00422 \operatorname{mol}}{0.02500 \operatorname{L}} \\ = 0.169 \operatorname{M} \end{array} \right\} \leftarrow 1 \operatorname{mark}$$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

5. The following data was obtained when 20.0 mL of a saturated solution of PbI₂ was evaporated to dryness.

Mass of evaporating dish	30.250 g
Mass of evaporating dish and residue	30.262 g

Use this information to determine the K_{sp} of PbI_2 .

Solution:

For Example:

Mass of
$$PbI_2 = 30.262 \text{ g} - 30.250 \text{ g} = 0.012 \text{ g}$$
 $\leftarrow \frac{1}{2} \text{ mark}$

Moles
$$PbI_2 = 0.012 \text{ g} \times \frac{1 \text{ mol}}{461.0 \text{ g}} = 2.60 \times 10^{-5} \text{ mol} \qquad \leftarrow \frac{1}{2} \text{ mark}$$

$$\left[Pb^{2+} \right] = \frac{2.60 \times 10^{-5} \text{ mol}}{0.0200 \text{ L}} = 1.3 \times 10^{-3} \text{ M} \qquad \leftarrow 1 \text{ mark}$$

$$\left[I^{-}\right] = \frac{2 \times 2.60 \times 10^{-5} \text{ mol}}{0.0200 \text{ L}} = 2.6 \times 10^{-3} \text{ M} \qquad \leftarrow 1 \text{ mark}$$

$$\mathbf{K}_{sp} = \left[\mathbf{Pb}^{2+} \right] \left[\mathbf{I}^{-} \right]^{2} = \left(1.3 \times 10^{-3} \right) \left(2.6 \times 10^{-3} \right)^{2} = 8.8 \times 10^{-9} \qquad \leftarrow \mathbf{1} \text{ mark}$$

(4 marks)

6. a) Write the equation for the predominant reaction of $HC_2O_4^-$ with HSO_3^- . (1 mark)

Solution:

b) Identify a Brønsted-Lowry conjugate acid base pair from the above reaction. (1 mark)

Solution:

$$\begin{array}{c} HC_{2}O_{4}^{-} / C_{2}O_{4}^{2-} \\ acid & base \\ OR \\ HSO_{3}^{-} / H_{2}SO_{3} \\ base & acid \end{array} \right\} \leftarrow 1 \text{ mark}$$

7. a) In the space below, sketch the titration curve for the reaction when 0.10 M HCl is added to 10.0 mL of 0.10 M NaOH.

Solution:

For Example:

See graph above. \leftarrow 3 marks

b) Describe two changes in the titration curve that would result from using 0.10 M CH₃COOH in place of the HCl.

(2 marks)

Solution:

For Example:

Any two of the following for 1 mark each.

The equivalence point is > 7. The vertical part of the curve is shorter. Buffer region.

014chk

8. Calculate the $[OH^-]$ in 0.50 M $NH_{3(aq)}$.

Solution:

For Example:

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}} = 1.79 \times 10^{-5} \qquad \qquad \leftarrow 1 \text{ mark}$$

$$\begin{bmatrix} I \\ 0.50 \\ -x \\ E \end{bmatrix} \stackrel{(NH_{3})}{=} \frac{K_{w}}{V_{a}} = \frac{1.0 \times 10^{-14}}{V_{a}} = 1.79 \times 10^{-5}$$

$$K_{b} = \frac{\begin{bmatrix} NH_{4}^{+} \end{bmatrix} \begin{bmatrix} OH^{-} \\ OH_{3} \end{bmatrix}}{\begin{bmatrix} NH_{3} \end{bmatrix}} = \frac{(x)(x)}{(0.50 - x)} = 1.79 \times 10^{-5}$$
Use assumption that $0.50 - x \approx 0.50$ or use the quadratic formula.

 $x = [OH^{-}] = 3.0 \times 10^{-3} M$

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)

(5 marks)

9. Balance the following redox reaction in basic solution.

(5 marks)

$$MnO_4^- + C_2O_4^{2-} \to MnO_2 + CO_3^{2-}$$
 (basic)

Solution:

For Example:

$$\frac{2 \times (3e^{-} + 4H^{+} + MnO_{4}^{-} \rightarrow MnO_{2} + 2H_{2}O)}{3 \times (2H_{2}O + C_{2}O_{4}^{2-} \rightarrow 2CO_{3}^{2-} + 4H^{+} + 2e^{-})}{2H_{2}O + 2MnO_{4}^{-} + 3C_{2}O_{4}^{2-} \rightarrow 2MnO_{2} + 6CO_{3}^{2-} + 4H^{+}}$$

2 marks (1 mark for each half cell)1 mark for multiplication1 mark for addition1 mark for basic

 $4\,\mathrm{OH^{-}}\,+\,2\mathrm{MnO_{4}^{-}}\,+\,3\mathrm{C_{2}O_{4}^{\ 2-}}\rightarrow2\mathrm{MnO_{2}}\,+\,6\mathrm{CO_{3}^{\ 2-}}\,+\,2\mathrm{H_{2}O}$

10. a) Draw and label the parts of an operating electrolytic cell during the electrolysis of molten potassium chloride $\text{KCl}_{(\ell)}$.

(3 marks)

Solution:

For Example:

1 mark for single container 1 mark for power supply 1 mark for electrodes

(1 mark)

b) Define the term *oxidizing agent*.

Solution:

For Example:

An oxidizing agent is a species which causes another to lose electrons. $\leftarrow 1 \text{ mark}$

END OF KEY